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Here we wished to determine how the sub-components of Working Memory (Phonological-Loop and Central
Executive) influence children's arithmetical development. Specifically, we aimed at distinguishing between
Working Memory inhibition and updating processes within the Central Executive, and the domain-specificity
(words and numbers) of both subcomponents in a population of children with low attainment in arithmetic
and their age matched typically-attaining controls. We show that both groups were similar for phonological
loop abilities, while Working Memory updating demonstrated a domain-specific modulation related to the
level of children's arithmetical performance. Moreover, inhibition processes interacted with domain-
specificity and arithmetical attainment. These results are particularly relevant to the diagnostic assessment of
arithmetical ability and should be considered in existing tests of arithmetical development.
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1. Introduction

1.1. Working Memory and arithmetic

It is widely assumed that Working Memory (WM) is important in
calculation (Baddeley & Hitch, 1977; Hitch, 1978), and in particular,
during the early development of arithmetical skills (e.g. Gathercole &
Pickering, 2000; Geary, 1990, 1993; Geary & Hoard, 2001; Ginsburg,
1997; Jordan & Montani, 1997; Kirby & Becker, 1988; Russell &
Ginsburg, 1984; Shalev & Gross-Tsur, 2001). Support for this comes
from two sources. First, there are tasks assessing the effects on
calculation in arithmetically competent adults when the WM system
is disturbed by experimental manipulations (e.g. De Rammelaere,
Stuyven, & Vandierendonck, 1999, 2001; Furst & Hitch, 2000; Lemaire,
Abdi, & Fayol, 1996; Logie, Gilhooly, & Wynn, 1994). The second
relates individual differences in WM to individual differences in
arithmetical attainment in school (e.g. Gathercole & Pickering, 2000;
Geary, 1990, 1993). A key distinction made in studies investigating
the relationship between WM and arithmetical abilities has focused
on the role of the different subsystems of WM as originally proposed
by Baddeley and Hitch (1977). A primary distinction has been made
between the Phonological Loop (PL) and the visuo-spatial sketchpad
(VSSP). The former has been associated with solving single-digit
addition problems (Hecht, 2002; Seyler, Kirk, & Ashcraft, 2003); while
the latter has been linked with the encoding of visually presented
problems (Logie et al., 1994). Yet, the third component, the Central
Executive (CE) systemhas been thought to play a key role in aspects of
calculation that require the storage and manipulation of intermediate
results online, by updating the results of operations such as carrying
and borrowing. In this model, the CE was originally thought of as the
system ‘to which all the complex issues that did not seem to be […]
specifically related to the two subsystems were assigned’ (Baddeley,
2003).

Given the distinctions proposed by the model, it has become
important to draw a distinction between the different components of
WM and their relationship with arithmetical abilities. This notion has
lead to mixed results on the role of the different subsystems in
supporting calculation. The key distinction made in both types of
study is between Central Executive (CE) processes and processes
dependent on the Phonological Loop (PL) subsystem of the WM
model proposed by Baddeley (1986). Maintenance processes are
intuitively plausible as the principal locus of the WM contribution to
calculation, since intermediate results from operations such as
carrying and borrowing are required by mental computation.
However, where CE and PL can be experimentally distinguished, it
is CE that seems more critical for calculation. For example, De
Rammelaere et al. (1999, 2001), found that articulatory suppression,
which should interfere with PL but not with CE did not affect
calculation; while random interval generation, thought to be the
responsibility of CE, did reduce arithmetical performance. Further-
more, it has been found that children with specific difficulties in
arithmetic (compared to both age-matched and ability-matched
controls) do not differ on tasks that rely primarily on PL, such as
immediate serial recall (e.g. digit span), but perform worse on tasks
tapping CE (McLean & Hitch, 1999; Passolunghi & Siegel, 2001; Siegel
& Ryan, 1989). On the other hand, it is the PL component of Working
Memory which has specifically been associated with arithmetical
impairments (Hecht, Torgensen, Wagner, & Rashotte, 2001; Hitch &
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McCauley, 1991; McLean & Hitch, 1999; Swanson & Sachse-Lee,
2001). Such a notion has been supported by dyscalculic pupils having
shorter span performance than controls (Koontz & Berch, 1996).
Indeed, both components of the WM system could play a role in the
typical or atypical development of numerical cognition, but at distinct
stages of development. PL could therefore contribute to the
development of the number vocabulary and counting strings, while
the CE could be responsible for tracking mental operations (Noël,
Seron, & Trovarelli, 2004).

The most convincing evidence relating WM to mathematical
achievement in children is a longitudinal study investigating children
from kindergarten to third grade by Geary et al. (2009). They used the
Working Memory Test Battery for Children (Pickering & Gathercole,
2001) to separately measure CE, PL and the visuospatial sketchpad
(VSSP). This study has found that different systems of WM can
discriminate between different levels of mathematical impairments in
children as well as their different levels of math proficiency (Geary et
al., 2009). Specifically, Geary and colleagues underline the importance
of the CE component for the ability of correctly retrieving simple
addition facts, which is of particular relevance to the present study.

Now it is generally assumed that WM is a domain-general system
that supports a wide range of cognitive processes. Yet, it has also been
suggested that in fact there is a domain-specific coding. In particular,
that numbersmay bemaintained differently or separately fromwords
(Butterworth, Cipolotti, & Warrington, 1996). It may be important
therefore to distinguish number from word memory, and to directly
address the issue of selecting and maintaining task-relevant
information.

In fact, in a cross-sectional study by Geary et al. (2009), it was
found that the best predictors for inclusion of Mathematics Learning
Disability (MLD) and Low Achieving (LA) were purely numerical — a
number line task and the ability to discriminate the numerosity of
sets, which suggests that “these children have a poor number sense, in
support of other findings” (Butterworth & Reigosa, 2007, p426). By
contrast, WM measures in this cross-sectional study gave rather
mixed results. “The best constellation of variables for predicting
membership in the MLD class included IQ and the phonological loop
and visuo-spatial sketch pad scores, the means for all of which were
about 1 SD below average” with the PL scores being higher for the LA
than the typically-achieving group. However, the CE variable did not
emerge as a significant predictor of MLD class membership in their
analyses contrary to previous findings by Geary, Hoard, Byrd-Craven,
Nugent, and Numtee (2007).

One possible reason for the mixed findings on measures of CE and
their relationship to mathematical abilities may be the particular
paradigm used. The tasks tapping the CE components of WM involved
counting and counting errors in a separate test were found as good
predictors of theCEmeasures. Thus, to better evaluate the role of CE, it is
important to have ameasure that directly taps the critical function of CE
in arithmetic — selecting and maintaining task-relevant numerical
information. Of particular relevance to the current study, are processes
of inhibiting and updating the contents ofmemory (Miyake et al., 2000).
The “updating function goes beyond the simple maintenance of task-
relevant information in its requirement to dynamically manipulate the
contents of working memory” (Miyake et al., 2000, p.57).

A recent neuroimaging study on healthy adults claims for a special
role for numbers in the PL component of WM (Knops, Nuerk, Fimm,
Vohn, &Willmes, 2006). Importantly this study demonstrates stimulus-
specific modulation of numerical stimuli in the intraparietal sulcus, a
regionoften associatedwith numerical processing (seeDehaene, Piazza,
Pinel, &Cohen, 2003), but not forword stimuli. The authors highlight the
importance of considering the a-verbal semantic component intrinsic to
number stimuli when designingWMparadigms for neuropsychological
testing.

Taken together, the current evidence for a complex relationship
between arithmetical abilities and WM suggests a need for specific
WM paradigms that distinguish among the different subcomponents
of WM and the content to be remembered.

1.2. Measuring maintenance and updating processes in Working Memory:
the Updating task

The present study investigates the ability to update relevant
information and the ability to inhibit irrelevant information in a group
of children who presented a selective impairment in arithmetic. In
addition to established tests to assess the capacity of the PL (digit and
word span tests), a novel test was developed based on an Updating
task previously used by Palladino, Cornoldi, De Beni, and Pazzaglia
(2001). Updating of WM was defined as the amount of information
recalled after being held and manipulated in WM. This concept is
similar to what Broadbent (1958) called “channel capacity”, and
Cowan (1995) called the “capacity of the focus of attention”.
Inhibition in the CE was defined as the amount of information to be
suppressed according to a prespecified criterion (see Method for
details). This concept is similar to the 'selective filter' defined by
Broadbent (1958) and to 'controlling the direction of attentional
focus' as proposed by Cowan (1995).

The advantage of using this Updating task is that it can pose
variable demands onmaintenance and inhibition processes separately
(Moro, 2008). The task requires participants to recall information that
is relevant according to a given criterion and at the same time
inhibiting irrelevant information.

1.3. Aims of the study

In this study we tested a group of children exhibiting a selective
impairment in exact calculation (addition) and their matched control
peers in two canonical span tasks and two novel updating tasks using
numbers and words as stimuli. Our first aim was to determine
whether selective impairments in arithmetical abilities could be
attributed to a deficit in WM. Moreover, we wanted to investigate
which subcomponent of WM might be impaired or spared in this
population of children. Specifically, whether impairments could be
seen in maintenance processes (PL subcomponent) as measured by
the span tasks, or in updating and inhibition processes (CE
subcomponent). Furthermore, by manipulating WM load and inhibi-
tion levels in the updating tasks, we aimed at better differentiating the
updating and inhibition processes of the CE component of WM.
Finally, we aimed to determine whether different stimulus categories
could discriminate between the two groups of children'sWM abilities.

2. Method

2.1. Participants

Participants (8 to 9 year olds) were recruited from three different
State Middle Schools in the London area and assigned to two groups:
Low Arithmetic group (LA, n=11) and Typical Arithmetic group (TA,
n=22).

2.1.1. Participant selection procedure
Participants in the experimental group (LA) were initially selected

upon teachers' assessment: teachers were asked to nominate children
who they felt were of normal intelligence but had serious difficulties
during Numeracy lessons, and the final selection followed additional
testing (see below). Participants in the control group (TA) comprised
children who were of the same gender and from the same class with
the children in the experimental group, to minimise the effects of
instruction. Prior to participation in the study participant assents and
parental consents were collected for each child. This study was
approved by the UCL Ethics Committee.



Table 1
Approximate task scores for LA and TA groups.

Approximate
tasks

LA group TA group Statistical
analyses

Mean (SD) Mean (SD)

Approximate comparison
Accuracy 60(13) 67.4(13) t(30)=1.48
RTs 703(355) 710(239) t(30)=.073
Inverse efficiency 52.1(29.3) 45.9(17.6) t(30)=−.075

Approximate addition
Accuracy 76.7(8.3) 70.4(16.1) t(30)=−1.14
RTs 784(532) 761(432) t(30)=−1.32
Inverse efficiency 45.1(34.3) 51.8(45.9) t(30)=.04
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Participant screening included a battery of mathematics and I.Q.
assessments. Each child was tested individually in a quiet room of the
schools in four different sessions (each one lasting no longer than
20 min).Mathematics assessments consisted of a standardised software
used for the diagnosis of mathematical difficulties on the basis of age
norms (Dyscalculia Screener, Butterworth, 2003; see also Landerl, Bevan,
& Butterworth, 2004). This software comprises three computer-
controlled, item-timed math tests plus one simple reaction time test
to assess whether slowness in responding to the numerical tasks was
due to general slow reaction times. The threemath tests are divided into
two subscales: ‘Capacity subscale’, which involves a dot enumeration
task and a number comparison task; and an ‘Achievement subscale’,
which involves an addition task. The ‘Capacity subscale’ is designed to
assess basic numerical capacities. Defective performance on this
subscale defines developmental dyscalculia (Butterworth, 2003).
Children with dyscalculia were not included in this study. The
‘Achievement subscale’ includes tasks which depend also on the
learning experience of the pupil. The software computes a combined
measure of accuracy and reaction times – inverse efficiency – by
dividing the adjustedmedian reaction times by theproportion of correct
responses for each of the three tasks. The test average on accuracy of the
nationally standardised score is 100 (15 SD).

I.Q.was examined only in the experimental group using theWISC-III
full protocol (Wechsler, 1996). Results were then pro-rated for the
arithmetic subtest. All participants obtained an average I.Q. score
according to their age group (mean FS.I.Q.=102.7, SD=15.47) except
one, who was discarded from subsequent analyses (FS.I.Q.=67).

Low Arithmetical ability was defined by the following criteria: 1) a
standardised score below 81 on the ‘Achievement subscale’ of the
Dyscalculia Screener, which is the equivalent of the bottom 7% of the
population; 2) a performance within the normal range (greater than
89) in both tasks of the ‘Capacity subscale’ in order to exclude
dyscalculic participants; and 3), an I.Q. score within the normal-range
for their age group (FS.I.Q. score N78). Thus, the LA group was defined
as being in the bottom two stanines1 for their age-group for timed
addition, but was not dyscalculic according to the results on the two
capacity tasks. Participants in the Typical Arithmetic group (TA)
displayed average performance on the two capacity tasks of the
Dyscalculia Screener as well as on the achievement task (fourth
stanine or above).

Further statistical analyses on the two groups of interest revealed
that the TA groupwas significantly better than LA in addition accuracy
(87.3% (SD 8.47) vs 58.9% (SD 7.85), pb0.01).

2.2. Mathematics assessments

2.2.1. Dyscalculia Screener

2.2.1.1. Simple reaction time task. The child is asked to press a key as
soon as a black spot is presented (in random locations and after
randomised intervals) on a white computer screen. Reaction times on
the three numerical tests are adjusted to take this measure into
account.

2.2.1.2. Dot enumeration task. This task is one of the measures of the
‘Capacity subscale’. The child is asked to decide, using a key press
response, whether the numerosity of a random array of dots
presented on a left panel of the screen matches the numerosity of a
digit in the right panel. The range of numerosities used was between
one and ten. Accuracy and speed were emphasised. This task includes
sixty-eight trials.
1 Please note that Stanine (STAndard NINE) is a method of scaling test scores on a
nine-point standard scale with a mean of five (5) and a standard deviation of two (2),
which is now widely used in educational assessments (e.g. Canada). The second
Stanine corresponds to the bottom 7% of the population.
2.2.1.3. Number comparison task. This task is part of the ‘Capacity
subscale’. The child is presentedwith two Arabic single digits – one on
the left and one on the right side of the computer screen – and is asked
to indicate the larger number in numerical value by a key press. Digit
pairs used were between one and nine (excluding number five). The
software registers both accuracy and reaction time for each of the
forty-two trials.

2.2.1.4. Addition task. The addition task is part of the ‘Achievement
subscale’. The child is asked to verify the result of single-digit addition
problems presented in the middle of the screen and press a key
according to whether the result is correct or not for a total of twenty-
eight trials. Accuracy and speed are emphasised.

2.2.2. Approximate arithmetic
It has been argued that an innate system for processing

approximate numerosities forms the basis of arithmetical develop-
ment (Barth et al., 2006; Gilmore, McCarthy, & Spelke, 2007;
Halberda, Mazzocco, & Feigenson, 2008; but see Iuculano, Tang,
Hall, & Butterworth, 2008). We therefore exploited a set of tasks
which used non-symbolic stimuli requiring only a grasp of approx-
imate numerosity, and compared performance of the LA group to the
age-matched TA group. These assessments were programmed in
Matlab 6.5 using the Cogent application.

2.2.2.1. Approximate numerosity tasks. Three approximate tasks (see
Iuculano et al., 2008) were used to assess approximate non-symbolic
arithmetic and numerical comparison abilities. Please note that this
battery of tasks is not part of a standardised test for arithmetic, but it is
rather intended as an experimental set of tasks comparing the two
groups of interest (see Table 1).

In the Comparison task a set of blue dots appeared on the upper
left side of the computer screen (1300 ms) and then moved behind a
black box placed on the lower left side of the screen (650 ms). An
array of red dots subsequently appeared on the upper right side of the
screen (1300 ms) and moved down (650 ms) to the bottom right of
the screen. The child had to select the array with more dots.

In the Addition task, one array of blue dots appeared on the upper
left side of the computer screen (1300 ms) and moved down behind a
black box placed on the lower left side of the computer screen
(650 ms). Another array of blue dots would then appear in the same
position as the previous one (1300 s) and moved down behind the
same black box (650 ms). Finally, as in the comparison task, an array
of red dots appeared on the upper right side of the screen (1300 ms)
andmoved down (650 ms) to the bottom right of the screen. The child
had to decide which hadmore dots, the box with two sets of blue dots
or the comparison array of red dots.
Approximate subtraction
Accuracy 52.9(8.5) 61.7(11.8) t(30)=2.11⁎

RTs 824(521) 699(302) t(30)=−.86
Inverse efficiency 67.4(46.7) 51.6(32.8) t(30)=−1.1

⁎ pb .05.
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In the Subtraction task, an array of blue dots appeared on the upper
left side of the computer screen (1300 ms) and moved down behind a
black box positioned on the lower left side of the screen (650 ms). A
subset of the same array of blue dots then moved out of the box and
disappeared off the screen (650 ms). Finally, as in the other two tasks,
an array of red dots appeared on the upper right side of the screen
(1300 ms) and moved down to the bottom right side of the screen
(650 ms). The child had to decide which had more dots, the blue dots
remaining in the box or the red dots.

The final result of numerosities for both the addition and the
subtraction operations was equated across the two tasks. The
numerosities used in the three tasks ranged between ten and fifty-
eight dots. Each task comprised twenty-four trials. Accuracy and speed
were both emphasised.

2.2.3. Working Memory assessments
AllWorkingMemory assessments were administered in the fourth

session of testing. The order of administrating tasks was counter-
balanced among participants. The dependent variable used was
accuracy which was defined in terms of the percentage of correct
recalls from a given list.

2.2.3.1. Span tasks. Two verbal span taskswere used: a Digit Span and a
Word Span task, both forward and backward. The stimuli used in the
Digit Span forward and backward were identical to those used in the
WAIS-III scale (Wechsler, 1997). Stimuli in the Word Span task were
of two semantic categories – Animals and Objects – and were selected
in order to match the digit stimuli in number of syllables (one to five)
and word lengths (number of letters). Lists were of increasing
complexity from two to nine items. Stimuli were verbally presented
by the same experimenter at the rate of one item per second.

The task instructions were the following for both forward tasks
(Digit andWord): “I am going to say some numbers (or words). Listen
carefully, and when I am through, I want you to say them right after
me. Just say what I say”. Instructions for the backward tasks were:
“Now I am going to say some more numbers (or words). But this time
when I stop, I want you to say them backward, from the last one that I
say to the first one. For example, if I say 7–1–9, what would you say?”
If the child was correct, the task will begin with two practice trials,
otherwise the experimenter will give the correct answer of the
problem (9–1–7) and assure the child had understood the task, before
administering the practice trials.

2.2.3.2. Updating tasks. A task of WM was devised to test the
participants' ability to update relevant information and inhibit
irrelevant information during a task of free recall with a semantic
criterion (Moro, 2008). It was adapted from Palladino et al. (2001).

Sixteen lists of words (eight lists of names of animals and eight
lists of names of objects) and sixteen lists of two-digit numbers (odd
in half of the lists even in the other half) were presented to the
children who were required to retain the relevant stimuli based on an
ongoing semantic criterion (magnitude of the stimuli). The words
were bi- or tri-syllabic highly familiar and imaginable nouns initially
selected from a list by Burani, Barca, and Arduino (2001) and also via a
pilot study in which 23 adult participants were asked to judge, on a
scale from 1 (very small) to 9 (very big), the dimensions of 53 animals
and 100 objects. The order of presentation was randomised. Only the
itemswith a clearly discriminable size were used. A second pilot study
(with 20 adult participants) was conducted, in order to check the
discriminability of the selected items within the lists. The lists were
balanced for number of syllables and length of the word (number of
letters).

Stimuli in the Number Updating task were double-digit numbers
ranging from 22 to 99. They were associated to the animals and objects
according to the size-judgement from the pilot study (i.e. the smallest
animal/object used in the list would correspond to number 22, which
was the smallest number in the list of numbers). In this way the lists
were similarly constructed so that each number corresponded to an
object or animal. The numbers excluded were teens, multiples of ten,
and numbers containing 1 as a unit: since numbers with “1” as decade
(10–19)were removed, numberswith “1” as theunit (e.g. 21, 31,…, and
91)were also removed so that each digit (2–9)wouldhave anequal rate
of occurrence. Moreover, in this way there was an equal number of odd
and even numbers. A possible source of confusion could have been that
the number of syllables composing the double-digit number stimuli is
bigger (3 to 5 syllables) than single-digit numbers, but the use of two-
digit numberswasnecessary in order tohavea large numberof different
items and match the two tasks.

Four practice trials (two for each task) preceded the actual
experiment to ensure that the child understood the task require-
ments. The stimuli were verbally presented by the experimenter at
the rate of one item per second and the child was required to recall a
predefined number of the smallest items presented. This procedure
required the child to constantly update the incoming information and
to inhibit or suppress the irrelevant items.

WM load was manipulated by having four recall conditions with
participants having to recall one (WML1), two (WML2), three
(WML3) or four (WML4) of the smallest items presented. From now
onwewill refer to this factor asWorkingMemory Load. Inhibitionwas
a two level factor with the participant having to ignore (or initially
recall and then inhibit) one item (condition of Low Inhibition, LI) or
three items (condition of High Inhibition, HI). As a result, the list
length varied between two and seven items. An example of list with
three items to maintain and three items to inhibit, is: “giraffe–
pelican–tortoise–tiger–chicken–dolphin”. Here, the participant must
remember the three smallest animals in the list (i.e. pelican, tortoise,
and chicken) while inhibiting the recall of the other three. An example
of a list with numbers, where two items had to be recalled and three
had to be inhibited is: “26–68–92–66–35”. Here the items to recall are
26 and 35 (i.e. the two smallest numbers in the list). In order to
perform correctly, the child, while listening to the presented items,
has to constantly update the informationwith the new itempresented
and to inhibit one of the previously recalled items that is no longer
fulfilling the criterion.

The percentage of correct items recalled was considered as a
measure of WM.

3. Results

Significant differences between the two groups on the WM
assessments were assessed by repeated measures ANOVA. The model
for the Span tasks had Task (Word task andNumber task) and Condition
(Forward and Backward) as the within subjects factors and Group (LA
and TA) as the between subjects factor.

The Updating task used a 2×4×2×2 mixed design with Task
(Word and Number), Recall (one, two, three and four items to recall)
and Inhibition (Low — one item to inhibit and High — three items to
inhibit) as within subjects factors. Group (LA and TA) was the
between subjects factor. Accuracy was defined as the percentage of
correct recalls.

Greenhouse–Geisser corrections were applied to all factors with
more than two levels to remedy violations of sphericity (Keselman &
Rogan, 1980).

3.1. Span tasks

Repeated measures ANOVA revealed a main effect of Task
(F(1,30)=4.8, p=.036, η2=.13): the Number task was significantly
better than the Word task; and a main effect of Condition (F(1,30)=
154.6, pb .001, η2=.84): the Forward condition was significantly
better maintained than the Backward condition. There was no main
effect of Group (F(1,30)=.078, p=.78, η2=.003) (Fig. 1). All the



Fig. 1. Mean of maintained items for the LA group (light grey) and for the TA group
(dark grey) for each of the Span tasks. Error bars indicate standard errors.

Fig. 3. Percentage of correct recalls for theWord task and the Number task in the LA and
the TA groups. **pb .005. Error bars indicate standard errors.
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interactions were not significant: Task by Group (F(1,30)=3.6,
p=.068, η2= .1); Condition by Group (F(1,30)=.03, p=.85,
η2=.001); Task by Condition (F(1,30)=.89, p=.35, η2=.03) and
Task by Condition by Group (F(1,30)=.29, p=.59, η2=.009).
3.2. Updating tasks

A repeated measures ANOVA revealed a main effect of Task: the
Word task was more accurate than the Number task [F(1,30)=53.87,
pb .001, η2=.64]. There was a main effect of Working Memory Load
[F(2.33, 69.79)=190.799, pb .001, η2=.86] and a main effect of
Inhibition [F(1,30)=117.99; pb .001, η2=.79]: in both tasks, the
proportion of correct recalls decreased with increased WM load and
it was modulated by increased inhibition of irrelevant information.
There was also a Task by WML interaction [F(2.75, 82.61)=7.51;
pb .001, η2=.2]: the two tasks only differed in theWML3 andWML4
conditions where the accuracy of the Number task was lower than
the Word task (pb .001). The Task by Inhibition interaction was also
significant [F(1,30)=7.42; pb .05, η2=.2]: the two tasks only
differed in the Low Inhibition condition (pb .05). Moreover, the
Task by Inhibition by WML interaction was also significant [F(2.74,
82.32)=3.79; pb .05, η2=.11]. Post-hoc analyses (paired sample
t-tests) showed that the two tasks (Words and Numbers) differed
for both levels of Inhibition only in the WML3 condition (pb .005)
Fig. 2. Percentage of correct recalls for the fourWM Load conditions (x-axis) on the two
Inhibition conditions for both tasks. **pb .005. Error bars indicate standard errors.
(see Fig. 2). The interaction of WML by Inhibition was not
significant (F(2.73, 81.9)=2.24, p=.095, η2=.07).

There was no main effect of Group [F(1,30)=.008, p=.93,
η2=.00]. However, a Task by Group interaction was found [F(1,30)=
6.72, pb .05, η2=.18] (see Fig. 3). The three-way interaction Task by
Inhibition by Group was also significant [F(1,30)=8.34, pb .01,
η2=.22] (see Fig. 4A). Post-hoc analyses (independent sample t-tests)
revealed that the LA group performed significantly better than the TA
group in the HI condition of the Word task (pb .05) (see Fig. 4B).

The other interactions were not significant: Inhibition by Group
(F(1,30)=1.7, p=.202,η2=.05);WMLbyGroup (F(2.33, 69.79)=.57,
p=.64,η2=.02); TaskbyWMLbyGroup (F(2.75, 82.61)=1.04, p=.37,
η2=.03); WML by Inhibition by Group (F(2.73, 81.9)=.36, p=.78,
η2=.01); and Task by WML by Inhibition by Group (F(2.74, 82.32)=
.093, p=.95, η2=.003).

4. Discussion

This study employed a new updating task to assess the
contribution of WM components to the processes of calculation in
8–9 year olds. It showed first, that updating in the Word task was
easier than updating in the Number task. Second, it showed clear and
significant effects of Working Memory Load (number of items to
recall) and Inhibition (number of items to inhibit). Moreover, the LA
group displayed better performance for the High Inhibition of word
stimuli. This is consistent with the proposal for domain- or material-
specific capacities in WM (Butterworth et al., 1996; Semenza, Miceli,
& Girelli, 1997). Under this notion, two-digit numbers display greater
semantic and syntactic complexity compared to long nouns. This
interpretation is consistent with our current findings that multi-digit
number stimuli are more difficult than word stimuli in accordance
with previous data in healthy adults (Moro, 2008). Furthermore,
words can be remembered through verbal encoding and image
encoding, while numbers cannot (Paivio, 1991; Paivio, Walsh, & Bons,
1994). This could explain why, in general, highly imaginable concrete
nouns are more easily remembered than numbers and other word
categories (i.e. abstract nouns or verbs). On the other hand, one digit
numbers in the span tasks were found to be recalled better than nouns
of the same length for both groups.

This study distinguished two groups of 8–9 year olds on the basis
of their speed and accuracy on a standardised test of numerical
capacity and attainment in curriculum exact arithmetic (Butterworth,
2003). Additionally, they were tested on their ability to carry out
approximate addition and subtraction with non-symbolic (dot array)
stimuli since these are held to be foundational for exact arithmetic
(Gilmore et al., 2007; Halberda et al., 2008). Two groups were readily
distinguishable on the basis of the arithmetical attainment in speed

image of Fig.�2
image of Fig.�3


Fig. 4. A. Percentage of correct recalls for the Word and the Number tasks with levels of Inhibition in the LA and the TA groups. (*b.05; **b.005). B. The LA group performed
significantly better than the TA group on the Word task at High Inhibition level. Error bars indicate standard errors.
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and accuracy of exact addition, but not on their ability to carry out the
capacity tasks of dot enumeration and number comparison. Moreover,
the groups did not differ on any of the approximate arithmetic tasks.

Comparing the two groups (TA and LA) on measures of WM, our
findings support a complex relationship between the components of
WM and calculation. Not only both span tasks forward, which are
robust assessments of PL, but also both span tasks backward, which
also rely strongly on PL, were performed at the same level in each
group, suggesting that these WM processes were not critical for
distinguishing typical from low attainment in arithmetic.

As was found by McLean and Hitch (1999) among others, forward
span does not predict calculation ability, and likewise in this study it
does not distinguish LA from TA. Moreover, in a study of develop-
mental dyscalculia in 8–9 year olds, Landerl et al. (2004) were able to
match dyscalculics on a Digit Span task with the typical learners. Our
results suggest that the immediate serial recall and rehearsal of
information (either words or numbers) do not discriminate between
the two groups tested and therefore do not seem to be an optimal
measure in order to assess the hypothesis of a causal or correlational
account between WM and calculation. However, we are not suggest-
ing that these tasks should be removed from the existing batteries of
neuropsychological assessments, rather implemented with tasks
which tap the specific subsystems of WM (in this case the CE
component) and which discriminate between the stimulus materials
used.

In the updating tasks, we found no overall difference between the
two groups. Both groups handled increasing Working Memory Load
and the effects of Inhibition equally satisfactorily. Yet, a Task by Group
interaction was found suggesting that the LA group performed better
on Word than Number stimuli, while the contrary was true for the TA
group (see Fig. 3). In our view, this finding stresses a need to specify
the stimulus type in WM tasks (see also Knops et al., 2006), especially
when investigating learning disabilities.

Additionally, the three-way interaction of Task×Inhibition×
Group, suggests that High Inhibition had a greater effect on Words
than Numbers in the TA group while it had a greater impact on
Numbers than Words in the LA group. Surprisingly, the LA group
performed better on Words than Numbers while no significant effect
was found in the other direction. One explanation for this could be the
fact that Words elicited a bigger effect on semantic processes and
were a better discriminator of group performance. However, it is
possible that we were unable to detect any specific differences in
Number stimuli due to our relatively small sample size in the LA
group. Yet, Geary et al. (2009) also found facilitation in tasks tapping
the PL in Mathematical Learning Disabilities. Our study extends this
evidence to the CE component of WM and highlights its relationship
to the differing levels of inhibition.
To conclude, our study provides evidence for intact rehearsal and
maintenance processes in WM by measures of the PL (span tasks).
Additionally, it demonstrates the relationship of a domain-specific
updating function within the CE component of WM as implied by
studies of neurological patients (Butterworth et al., 1996; Semenza et
al., 1997). Finally, our results provide evidence for the importance of
considering the different aspects of CE subsystems such as Working
Memory Load and Inhibition processes, as they might both be crucial
for discriminating WM performance in clinical populations.

Finally,we believe that these results are of particular relevance for the
assessment of relationships between WM and arithmetical abilities. We
propose that these domain-specific updating tasks can be used as a basis
for respective studies examining the reliabilityof thepresent approachby
recruiting larger samples of LA individuals and also pupils with
Developmental Dyscalculia. The ultimate goal of such studies should
focus on optimizing assessments that better characterize the educational
development of children with and without learning disabilities.
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