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C H A P T E R 32

Mathematical Expertise

Brian Butterworth

Competence in mathematics is a basic
requirement for effective citizenship in a
modern numerate society (Cockcroft, 1982).
Poor numeracy skills are known to be
a serious handicap for paid employment
in the US (Rivera-Batiz, 1992) and the
UK (Bynner & Parsons, 1997). Indeed, the
UK Basic Skills Agency has published a
report suggesting that numeracy is more
important even than literacy in terms of
career prospects in the UK (Bynner &
Parsons, 1997). And the trend is toward an
even greater emphasis on numeracy: recent
research for the British Science, Technol-
ogy and Mathematics Council shows that
“mathematical skills in the workplace are
changing, with increasing numbers of peo-
ple engaged in mathematics-related work,
and with such work involving increas-
ingly sophisticated mathematical activities”
(Hoyles, Wolf, Molyneux-Hodgson, & Kent,
2002).

The level of competence routinely de-
manded in numerate cultures today would
have been considered quite exceptional 200

years ago. How then does one distinguish
today’s expert from the normally competent

school-leaver who can handle numbers of
arbitrary size, fractions and decimals, loga-
rithms, equations with unknowns and neg-
ative roots, and some differentiation and
integration? One could arbitrarily take the
top n% of a standard test (like the SAT-
M), but what should n be? Francis Galton,
in Hereditary Genius, used obituaries from
The Times of London and a biographical dic-
tionary, Men of our Time, as the criteria of
“eminence.” This gave him an estimated pro-
portion of 0.025% of the population. Really
exceptional individuals, his class G, were
about one-twentieth of these. He even des-
ignated a class X of people who were fewer
than one in a million (Galton, 1979).

However, not every expert that we would
wish to consider has taken the SAT-M, or
been the subject of a Times obituary. The
important criterion is that the candidate
expert demonstrates “reproducible supe-
rior performance,” preferably under some-
thing like laboratory conditions (Ericsson &
Charness, 1994).

The focus of this chapter will be to
attempt to identify the cognitive capaci-
ties, the disposition, and the training that
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equip someone to demonstrate “repro-
ducible superior performance,” particularly
in calculation, since this is the only area of
expertise in which there is much evidence.

There have been three extensive early
reviews of exceptional mathematical abili-
ties. The first was E. W. Scripture, a psy-
chologist at Leipzig (Scripture, 1891). He
reviewed in some detail the lives of 12 “arith-
metical prodigies,” including one mathe-
matician of note, Carl Friedrich Gauss. From
a “psychological analysis” of these lives, he
identified five characteristics that seemed to
distinguish the prodigies: the accuracy and
“rapidity” of memory, “arithmetical associa-
tion” (knowing lots of arithmetical facts and
procedures), inclination, mathematical pre-
cocity, and “imagination” (visual imagery).

The second review, like Scripture’s, was
published in the American Journal of Psychol-
ogy, and was by Frank D. Mitchell of “The
Psychological Seminary of Cornell Univer-
sity” (Mitchell, 1907). Also like Scripture, he
reviews the lives of prodigies, the same ones
as Scripture plus a further case, the author.
These are summarized in a table that lists
the heredity, development, education, men-
tal calculation, and memory of each prodigy.
Mitchell takes the view that prodigious abil-
ities grow out of counting, a verbal skill
where the numbers are recited out loud ini-
tially, and internally thereafter. This has an
implication for the “memory type” used by
prodigies. In his own case and that of most of
the prodigies he has analyzed, the memory
is of the auditory type, reflecting this early
experience since most of us begin to learn
numbers through counting, which involves
spoken words. Only between two and four
of the prodigies he examined have memory
of the “visual type.”

The third review, by Alfred Binet (Binet,
1894), included reaction-time tests of two
theatrical calculators of his day.

More recently, Barlow (1952) has written
about mathematical prodigies in the con-
text of other kinds of prodigy (Barlow, 1952).
And there is an excellent reconsideration of
the calculators studied by Scripture, Binet,
and Mitchell, along with useful data on more
recent calculators by Steven B. Smith in

The Great Mental Calculators: The Psychol-
ogy, Methods, and Lives of the Calculating
Prodigies (Smith, 1983). I shall be drawing
heavily on this volume along with Scripture,
Mitchell, and Binet for biographical details
of calculating prodigies. Finally, one of the
leading modern investigators has published a
review of expert calculators (Pesenti, 2005).

Calculators have attracted also the atten-
tion of experimental psychologists usually
focusing on a single case. The Polish calcula-
tor Salo Finkelstein was studied by Weinland
and Schlauch (1937), who used sophisti-
cated analyses of careful timing data from
various mathematical tasks, but with no
control subjects! The British mathematician
Alexander Aitken was studied by Hunter
(1962), and a more recent case, Rüdiger
Gamm, by Pesenti and colleagues (Pesenti
et al., 2001). Only Binet (1894) seems to have
explored the general phenomenon, carrying
out experiments on two professional theatri-
cal calculators and comparing their results
with other groups of practiced and unprac-
ticed calculators. He took considerable pains
to find the optimal way of timing the stimu-
lus presentation and the response, in an age
when there were no voice-activated relays.
However, he was less careful in designing the
experiments so that all the subjects received
the same stimuli under the same conditions.

What is striking about all these students
of exceptional mathematical abilities is their
conviction that there is nothing special about
mathematics as a cognitive domain. This
may be contrasted with Gardner’s popu-
lar theory of “multiple intelligences,” one
of which is “logico-mathematical” (Gardner,
1983).

The research on mathematical, especially
numerical, abilities in general strongly sug-
gests the existence of a domain-specific
capacity. There are two main arguments in
support of this.

First, specialized brain areas, especially
the left angular gyrus and the intraparietal
sulci, are active when mathematical activi-
ties are taking place (Donlan, 2003 ; Gruber,
Indefrey, Steinmetz, & Kleinschmidt, 2001;
Pesenti, Thioux, Seron, & De Volder, 2000).
When these areas are damaged, selective
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impairment of calculation frequently occurs
(Cipolotti & van Harskamp, 2001). Notice
that the specialized number areas are dis-
tinct from the areas active in reasoning,
which are in the prefrontal cortex (e.g., Goel
& Dolan, 2004).

Second, there is evidence for an innate
basis to this specialization. One strand of
evidence supports the claim for numerical
capacity in infants, even in the first few
months of life, when neither language nor
frontal-lobe functions such as reasoning have
developed. They are able to respond dis-
criminatively on the basis of numerosity
(Antell & Keating, 1983 ; Starkey & Cooper,
1980) and can even mentally manipulate
numerosities at six months by working out
what would happen when an object is added
or subtracted from an array (Wynn, 1992 ,
2000, 2002 ; Wynn, Bloom, & Chiang, 2002).
These infant capacities are similar to ones
observed in monkeys (Hauser, MacNeilage,
& Ware, 1996), which suggests ancestral ver-
sions that may have evolved because the
ability to recognize the numerosity param-
eter in the environment offers advantages in
foraging, mating (Edwards, Alder, & Rose,
2002), and also in conflict with conspecifics
(McComb, Packer, & Pusey, 1994). (See
Butterworth, 1999, for a review.) Moreover,
developmental disorder can lead to selective
deficits in the acquisition of even these sim-
ple numerical concepts when intelligence,
memory, and language are all at normal lev-
els (Landerl, Bevan, & Butterworth, 2004).

However, even if it is accepted that we
humans have inherited a specialized capac-
ity for representing numerosities, it does not
follow that this is normally distributed, such
that some people have it to a greater degree
than others, like height or IQ. It may be
more like color vision – either it is normal,
or it is defective in one of a small number of
ways. In the same way that ability as a col-
orist may require normal color vision, the
range of colorist abilities is not determined
by better or worse color discrimination, so it
is possible that calculating abilities require
a normal numerical “starter kit,” but the
abstract and complex skills that make expert
mathematicians and calculators is built by

other means on this basis. Smith (1983) com-
pares it to juggling. “Any sufficiently dili-
gent nonhandicapped person can learn to
juggle, but the skill is actually acquired only
by a handful of highly motivated individu-
als” (p. 6). Calculating prodigies themselves
often say that their abilities come from their
interest in numbers rather than from some
special gift.

So our central question in this chap-
ter is whether mathematical expertise, and
in particular calculation expertise, depends
on high cognitive abilities in non-numerical
domains, such as reasoning and memory, or
whether it can exist as a domain-specific
achievement.

What Makes for Mathematical
Expertise?

Francis Galton was quite clear that any kind
of eminence depended on “natural ability,”
which was by-and-large inherited. “By nat-
ural ability, I mean those qualities of intel-
lect and disposition, which urge and qualify
a man to perform acts that lead to reputa-
tion. I do not mean capacity without zeal,
nor zeal without capacity, nor even a combi-
nation of both of them, without an adequate
power of doing a great deal of very labori-
ous work.”

Having compared divines, wrestlers, men
of science, painters, poets, and others, he
found that eminent people tended to have
eminent parents and to produce eminent
offspring. Of course, we are talking mostly
about eminent men and their fathers, since
it was difficult for women to achieve emi-
nence. Overall, 31% of eminent men had an
eminent parent. Some 26% of scientific men
had scientific fathers, but 60% of scientifi-
cally eminent fathers have eminent sons (vs.
41% average). Galton speculates “descen-
dants [are] taught . . . not to waste [their]
powers on profitless speculation” (p. 320).

Although inherited characteristics are
held to be the key, “it may be well to add
a few supplementary remarks on the small
effects of a good education on a mind of
the highest order. A youth of abilities G, and
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X, is almost independent of ordinary school
education” (p. 43). He gives as an example
D’Alembert, who was a “foundling . . . put
out to nurse as a pauper baby to the wife
of a poor glazier. The child’s indomitable
tendency to the higher studies, could not
be repressed by his foster mother’s ridicule
and dissuasion, nor by the taunts of his
schoolfellows, nor by the discouragements
of his schoomaster, who was incapable of
appreciating him, nor even by the reiter-
ated deep disappointment of finding that his
ideas, which he knew to be original, were
not novel, but long previously discovered by
others” (pp. 43–44). He records many other
eminent men with a comparably unpromis-
ing history.

He pays particular attention to “Wran-
glers,” students of mathematics at Cam-
bridge University. Not only do these men
have to pass the entrance examinations to
Cambridge (not as difficult then as now,
I believe), but they were ranked from the
highest (Senior) to the lowest strictly accor-
ding to the marks obtained in an exam.
These ranged from less than 500 to over
7500. He was thus able to compare the
Senior with the Second Wrangler, and he
noted the enormous discrepancy often obse-
rved, with the Senior frequently achieving
double the marks of the Second.

For Galton, this was a demonstration of
the enormous range of inherited abilities.
His tripartite theory of eminence – capac-
ity, zeal, and power to work hard – is quite
general and can be applied to any career. By
capacity, he seems to have meant something
like what we would now call intelligence
or g. There was thus no special capacity for
mathematics. He seeks to demonstrate this
by analyzing the subsequent careers of top
Wranglers. He notes that several were also
classical scholars, and a few were both Senior
Wranglers and the top classical prizemen
of the year. Many achieved distinction in
areas very different from mathematics, such
as law, politics, or becoming headmasters of
great schools.

His example of D’Alembert (1717–1783)
reinforces this point. Not only was he a
mathematician of great distinction, he was

even better known as the co-editor with
Denis Diderot of the Encyclopedie.

Intelligence

Ability in mathematics is widely seen as
a marker for intelligence, and disability in
mathematics in school is seen as a marker for
low intelligence. This is not the place to dis-
cuss the general relationship between intel-
ligence and mathematical ability but only to
point out that severe disability can co-occur
with good to superior IQ scores (Landerl
et al., 2004).

In contrast to Galton, Mitchell (1907)
noted that “Skill in mental calculation is,
owing to the isolation of mental arith-
metic already noted, independent of general
education: the mathematical prodigy may be
illiterate or even densely stupid, or he may
be an all-round prodigy and veritable genius”
(p. 13 1). Many expert calculators achieved
eminence in a way that suggested excep-
tional cognitive abilities. These included
the mathematicians Euler, Gauss, Aitken,
and D’Alembert, and scientists and engi-
neers such as Ampère, Bidder, and Mitchell
himself.

Shakuntala Devi (born 1940) is in the
Guinness Book of World Records for being
able to multiply two 13 digit numbers in
28 seconds. She was tested formally by the
psychologist A. R. Jensen, who showed that
she was not much better than average on
standard IQ tests, and was actually slower
than average on some tests of speed of men-
tal processing, which Jensen regards as a reli-
able measure of intelligence (Jensen, 1990).
Dehaene comments that therefore “Devi’s
calculation were obviously not due to a
global speed up of her internal clock: Only
her arithmetic processor ran with lightning
speed” (Dehaene, 1997).

Moreover, other prodigious calculators
seemed to have been men of ordinary or
even very low cognitive ability. Dase, who
did calculations for Gauss and Schumacher,
was “unable to comprehend the first ele-
ments of mathematics.” One pair of twins
with prodigious abilities for calendrical
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calculation were estimated to have IQs in
the 60s and had great difficulties with sim-
ple arithmetic (Horwitz, Deming, & Winter,
1969). Mitchell (1907) noted that two prodi-
gious calculators, Fuller (1710?–1790) and
Buxton (1702–1772), “were men of such lim-
ited intelligence that they could compre-
hend scarcely anything, either theoretical
or practical, more complex than counting”
(pp. 98–99).

Hermelin and O’Connor reported a
young man who was able to recognize and
generate primes of up to five digits four or
five times faster than a graduate with a math
degree and also factorize these numbers
faster and more accurately. What is extraor-
dinary is that the man had a measured IQ of
67 and was unable to speak or understand
speech (Hermelin & O’Connor, 1990). See
Horn and Masunaga, Chapter 34 , for fur-
ther discussoin of intelligence and expertise.

Memory

“The distinction often made between mem-
ory and calculation, with the implication that
the great calculator is simply a little calcula-
tor with a big memory, using the same meth-
ods as his lesser rivals, is misleading; the pro-
cess is always (in the “natural calculators”)
a true calculation, and memory for figures is
important only in so far as it stands in the ser-
vice of calculation” (Mitchell, 1907, p. 132).

Scripture (1891) distinguished “accuracy”
and “rapidity” of memory from what he
called “association.” We would now call the
former “working memory” and the latter
long-term “semantic memory” (Cappelletti,
Kopelman, & Butterworth, 2002). Calcula-
tors themselves stressed the importance of
both being able to hold many items in mind
as they were carrying out calculations, and
also knowing many more facts about num-
bers than the average person.

Working memory

According to Smith (1983), George Parker
Bidder (1806–1878), an exceptional calcu-
lator and a leading engineer of his time

(a collaborator with Robert Stephenson),
was the first to explicitly draw attention to
working-memory limitations on calculation.
Bidder noted that “As compared with the
operation on paper, in multiplying 3 figures
by 3 figures, you have three lines of 4 fig-
ures each, or 12 figures in the process to
be added up; in multiplying 6 figures into
6 figures, you have six lines of 7 figures, or
42 figures to be added up.” In general, the dif-
ficulty in using the mental analogue of the
written method increases by something in
the order of n2 + n of the number of digits
in an n × n problem (Smith, 1953 , p. 53).
For this reason, it very important for the
calculator to develop techniques for reduc-
ing current load. Given that a three digit
number was, for Bidder (and most calcu-
lating experts) a single item, a three-digit
by three-digit calculation, working from the
left (instead of the right, as is normal in
the written method), requires no more than
five items to be currently maintained. For
the problem 358 × 464 , assuming trailing
zeros are stored at no cost, Bidder probably
worked it out thus:

Although there are many steps, the cur-
rent load is kept small, and the routine is
easy to practice.

Wim Klein (1912–1986), one of the fastest
calculators, would write down intermedi-
ate results, which, he claimed, speeds up
the process, an important element impor-
tant when there is an audience. Smith (1983)
timed him multiplying two five-digit num-
bers. With writing down, it took 14 seconds,
and without, 44 seconds.

Perhaps the most detailed psychologi-
cal investigation of working memory comes
from two studies of German calculating
prodigy Rüdiger Gamm. Gamm is able to
calculate the 9th powers and the 5 th roots
with great accuracy, and find the quotient
of two primes to 60 decimal places. Even
more extraordinary is that he started train-
ing for these feats when he was 20 years old.
Before then, his mathematical abilities had
been unexceptional.

Gamm, again like other experts, is able
to solve multi-step problems very quickly
and accurately. To solve 68 × 76 takes



P1: KOD
052184097Xc32 CB1040B/Ericsson 0 521 84087 X February 27, 2006 20:52

558 the cambridge handbook of expertise and expert performance

Table 32 .1.

Step Numbers in memory
Number of items
to be maintained Calculation

1 358 464 2

2 120000 3 400 × 300

3 20000 4 400 × 50

4 140000 3 120000 + 20000

5 3200 5 400 × 8

6 143200 4 140000 + 3200

7 18000 5 60 × 300

8 161200 4 143200 + 18000

9 3000 5 60 × 50

10 164200 4 161200 + 3000

11 480 5 60 × 8

12 164680 4 164200 + 480

13 1200 5 4 × 300

14 165880 4 164680 + 1200

15 200 5 4 × 50

16 166080 4 165880 + 200

17 32 5 4 × 8

18 166112 4 166080 + 32

(adapted from Smith, 1953 , p. 54)

seven steps and six intermediate results.
After some practice with the task, Gamm
was taking around five seconds a problem
with a high degree of accuracy. (Two digit
squares, by contrast, took him just over a
second because they were simply retrieved
from memory.) Such a sequence of opera-
tions and data handling would put a consid-
erable strain on normal working memory, yet
all kinds of expertise show enormous gains
in the temporary storage of task-relevant
materials: musicians can recall tunes after a
single hearing, chess masters can recall posi-
tions after a single tachistoscopic presenta-
tion as well as the whole game that they have
just played, expert waiters can keep in mind
the precise orders for up to 20 people with-
out writing them down (at least until the
customer has paid). Experts develop a kind
of “Long-term Working Memory” (Ericsson
& Kintsch, 1995).

“Long-term Working Memory”

As we have seen, one of the barriers to
mental calculation is the limited capac-
ity of working memory. Many exceptional

calculators use and invent algorithms that
minimize the load on working memory. It
has also been suggested that one of the
consequences of expertise is the ability to
exploit the unlimited capacity of long-term
memory in the service of the current task
(Ericsson & Kintsch, 1995). It is as if experts
“develop an ability to use long-term episodic
memory to maintain task-relevant materi-
als, rather as computers extend the capacity
of RAM by using swap space on the hard
drive to create a larger ‘virtual memory’”
(Butterworth, 2001, p. 12).

Language processing is a more familiar
example of prodigious skill after years of
daily practice enabling retention of infor-
mation well beyond the span of short-term
working memory. We can effortlessly retain
meaningful sentences of 20 words or more,
well beyond the span for unrelated words
(about six) or words not in our language
(about three). Several related accounts of
this phenonemon propose cues in work-
ing memory for retrieving well-organized
domain-specific information in long-term
episodic memory (Butterworth, Shallice, &
Watson, 1990). Pesenti and colleagues argue
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that Gamm has learned to use this LTWM
facility to maintain task-related mathemati-
cal information.

It turned out that computation compared
to retrieval of memorized number facts in
both Gamm and the controls activated an
extensive visual processing system bilater-
ally. According to the authors, this suggests
that “during complex calculation, numbers
are held and manipulated onto a visual type
of short term representational medium.”
This contrasts with the more usual claim that
“sub-vocal rehearsal is . . . required for men-
tal arithmetic” (Logie, Gilhooly, & Wynn,
1994), but it would explain how it is possible
for brain damage to reduce digit span to two
and yet allow a patient to reliably add two
orally presented three-digit numbers (But-
terworth, Cipolotti, & Warrington, 1996).
(See this volume for more on LTWM.)

We will see below that Gamm’s use
of LTWM is supported by analysis of neu-
ral acitivity.

Auditory and Visual Working Memory

Mitchell noticed that there seemed to be
two types of working memory used in cal-
culation, visual and auditory, depending on
how numbers were initially learned. Most
children learn about calculating by count-
ing aloud using the names of numbers,
names often some years before they under-
stand written numerals (Gelman & Gallistel,
1978). There appear to be three main stages
in the development of counting as an addi-
tion strategy:

1. Counting all. For 3 + 5 , children will
count “one, two, three” and then “one,
two, three, four, five” countables to
establish the numerosity of the sets to
be added, so that two sets will be made
visible – for example, three fingers on
one hand and five fingers on the other.
The child will then count all the objects.

2 . Counting on from first. Some children
come to realise that it is not necessary
to count the first addend. They can start
with three, and then count on another
five to get the solution. Using finger
counting, the child will no longer count
out the first set, but start with the word

“Three,” and then use a hand to count
on the second addend: “Four, five, six,
seven, eight.”

3 . Counting on from larger. It is more effi-
cient, and less prone to error, when the
smaller of the two addends is counted.
The child now selects the larger number
to start with: “Five,” and then carries on
“Six, seven, eight.” (Butterworth, 2 005)

However, many calculators report that
their early experiences involved manipula-
bles. Bidder described how he learned mul-
tiplication in the following way: “I used to
arrange [peas, marbles, or shot] into squares,
of 8 on each side, and then on counting them
throughout, I found that the whole number
amounted to 64” (Quoted by Smith, 1983 ,
p. 212). It is probable that Bidder, like oth-
ers who had early experience with manip-
ulables, also used a kind of visual coding.
Salo Finkelstein (born 1896), who seemed
to have had a standard Polish mathemati-
cal education, without showing early signs
of exceptionality, calculated by visualizing
numbers on a freshly washed blackboard.
His calculation ability seemed not to have
equalled many other prodigies in terms of
time or accuracy, but his ability to memo-
rize numbers was. He was able to remem-
ber numbers up to about 28 digits following
a one-second visual exposure; for 39 digits
he needed a four-second exposure. He was
adept at repeating in either direction with
equal accuracy, which traditionally suggests
a visual memory. However, he also used a
wide variety of associations for substrings to
help him, including numerical facts, such
as the fact that 1.41 is the square root of
2 , 2 ,592 ,000 is the number of seconds in a
month, 10,592 is a familiar telephone num-
ber, and 2595 is the number of paragraphs of
Spinoza’s ethics (Smith 1983 , Chapter 33).

Dehaene and colleagues (Dehaene &
Cohen, 1995) have proposed that multidigit
arithmetic of the sort carried out by calcu-
lators depends on visualizing the digits on
a kind of mental blackboard. There is some
evidence that neurological damage can lead
to deficits in spatial cognition, which can
lead to a kind of spatial “acalculia” where
the patient has difficulty in maintaining the
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digits in columns accurately (Hécaen, Angel-
ergues, & Houillier, 1961).

In the case of Gamm, it was possible to
identify the brain areas active during calcu-
lation, and hence whether verbal or visual
areas were active. It turned out that compu-
tation compared to retrieval of memorized
number facts in both Gamm and the controls
activated an extensive visual processing sys-
tem bilaterally. According to Pesenti and col-
leagues, this suggests that “during complex
calculation, numbers are held and manipu-
lated onto a visual type of short term rep-
resentational medium” (Pesenti et al., 2001).
This contrasts with the more usual claim that
“sub-vocal rehearsal is . . . required for men-
tal arithmetic” (Logie et al., 1994), but it
would explain how it is possible for brain
damage to reduce digit span to two and yet
allow the patient to reliably add two orally
presented three-digit numbers (Butterworth
et al., 1996).

Domain-specificity in Memory

Gamm had a forward span of 11 digits (con-
trols 7.2 , SD = 0.8) and 12 digits backwards
(controls 5 .8, SD = 0.8), whereas his letter
span was in the normal range (Pesenti, Seron,
Samson, & Duroux, 1999).

Mondeux (1826–1861), a famous nine-
teenth-century calculator, was described by
a contemporary as never having learned
anything besides arithmetic; “Facts, dates,
places, pass before his brain as before a
mirror without leaving a trace” (quoted by
Smith, 1983 , p. 294)

Long-Term Working Memory (Ericsson &
Kintsch, 1995), deployed by experts, is spe-
cific to the domain of expertise; thus, the
musician, the chess master, and the waiter
will be normal on for example digit span,
(Ericsson & Kintsch, 1995). So, as Ericsson
and Charness note, “exceptional memory is
nearly always restricted to one type of mate-
rial” (Ericsson & Charness, 1994).

“Management” and “Strengthening”
Memories

Solving even a simple arithmetical prob-
lem can be broken down into separable

components, which will include retrieving
arithmetical facts from memory, retrieving
procedures for calculating (such as borrow-
ing and carrying), understanding the arith-
metical concepts demanded by the problem,
and creating a hierarchical set of goals and
subgoals appropriate for reaching the solu-
tion. Charness and Campbell have shown
that, in learning a new algorithm for mul-
tiplying double-digit numbers, the mem-
ory elements are strengthened by practice,
but there is a larger effect from the overall
approach to the problem, particularly, from
“increased efficiency in managing memory
and accessing the next step in the procedure”
(Charness & Campbell, 1988)

Convergent evidence for the composi-
tionality of arithmetical task comes from
neurological patients, whose arithmetical
abilities can be selectively affected in very
specific ways: the memories for facts alone
can be lost, indeed the memories for facts
from each of the four arithmetical opera-
tions can be selectively impaired (Cipolotti
& van Harskamp, 2001; van Harskamp &
Cipolotti, 2001); arithmetical procedures
can be lost from memory (Girelli & Delazer,
1996; McCloskey & Caramazza, 1987); and
the ability to apply arithmetical principles
to problems can be selectively spared or
affected (Delazer & Benke, 1997; Hittmair-
Delazer, Semenza, & Denes, 1994).

It is, as has been noted above, that math-
ematical experts and calculating prodigies
build up enormous stores of what Scripture
called “associations” – numerical facts and
procedures.

Perhaps the greatest of recent calcula-
tors, Wim Klein acquired the multiplication
tables to 100 × 100 “from experience [he]
got by factoring.” However, he did set out to
memorize the table of logarithms up to 150.
This training enabled to him to achieve the
world record in extracting roots. He could
extract the 13 th root of a 100-digit number
in under two minutes by using a method
that requires taking logarithms of the left-
most group of numbers.

Aitken, similarly, had an enormous store
of number facts. For him the year 1961

evoked the thoughts 37 × 53 , 44
2 + 5

2 ,
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and 40
2 + 19

2 . He could also recite the first
100 decimal places of π (Hunter, 1962).

Like other calculating prodigies, Gamm
taught himself a vast range of number facts.
Most of us know our multiplication tables,
and perhaps 50 simple additions (Ashcraft,
1995), but Gamm has learned tables of
squares, cubes, roots, and so forth. Most
of us know a few procedures for working
out problems that we cannot retrieve from
memory, whereas Gamm has an enormous
store of procedures and shortcuts, some of
which he has learned from books, others he
has worked out for himself. Gamm, again
like other experts, is able to solve multi-step
problems very quickly and accurately. To
solve 68 × 76 takes seven steps and six inter-
mediate results. After some practice with the
task, Gamm was taking around five seconds
per problem with a high degree of accuracy.
(Two digit squares, by contrast, took him
just over a second because they were sim-
ply retrieved from memory.)

Motivation and Instruction

“Zeal” and “Inclination”

Most exceptional calculators seem to have
been obsessed with numbers from the time
they began to count. Jedediah Buxton kept
a record of all the free drinks he received
from demonstrating his calculating prowess,
Thomas Fuller counted the hairs in a cow’s
tail, and Arthur Griffiths (1880–1911) kept
track of the grains of corn he fed to the
chickens: 42 ,173 over three years (Smith,
1953 , p. 277). Srinivasa Ramanujan (1887–
1920), a prodigious calculator and, accord-
ing to G. H. Hardy (Hardy, 1969), a natural
mathematical genius in the class of Euler or
Gauss, would work at mathematics in the
mornings before work, often having stayed
up all night working on problems.

Calculators from an early age develop a
kind of intimacy with numbers. When Bid-
der was learning to count to 100, the num-
bers became “as it were, my friends, and
I knew all their friends and acquaintances”
(Smith, 1983 , p. 5). Klein told Smith that

“Numbers are friends for me, more or less.
It doesn’t mean the same for you, does
it, 3 ,844? For you it’s just a three and an
eight and a four and a four. But I say, ‘Hi,
62 squared.’” In a famous story, Hardy visited
Ramanujan in hospital and mentioned that
the taxi in which he had come was number
1729, “A rather dull number.” “No, Hardy! It
is a very interesting number. It is the small-
est number expressible as the sum of two
cubes in two different ways” (C. P. Snow in
his introduction to [Hardy, 1969]).

In some cases, there is an incident that
awakens the interest. For Aitken, a teacher
“chanced to say that you can use the fac-
torization to square a number: a2 + b2 =
(a + b)(a − b) + b2 . Suppose you had 47 –
that was his example – he said you could
take b as 3 . So (a + b) is 50 and (a − b) is
44 , which you can multiply together to give
2200. Then the square of b is 9, and so, boys,
he said, 47 squared is 2209. Well, from that
moment, that was the light, and I never went
back” (Hunter, 1962).

In the case of Gamm, he said that at
school he was “very bad at arithmetic”
because the teachers never explained the
concepts in ways he could understand. As a
result he lost interest in mathematics until
about the age of twenty, when he came
across an algorithm for calendrical calcu-
lation. He practiced it for fun, and then
entered for a TV competition where he
could win bets by solving various calcu-
lations. See Zimmerman, Chapter 39, for
more on motivational factors in the devel-
opment of expertise.

The Role of Practice – 10,000 Hours

The highest level of expertise in violinists
studied by Ericsson et al. (1993) requires
10,000 hours of practice (by the age of
20 years). In general, the level of expert per-
formance was related directly (monotoni-
cally) to the amount of practice. Similarly,
expert calculators spend a great deal of
time learning numerical facts and proce-
dures, though the exact amount has never
been properly quantified. In preparation for
the T.V. program, Gamm started to train
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Table 32 .2 .

638 × 82 3 72 86 × 5397

Inaudi 6.4 sec 21 sec
Diamandi 56 sec 2 min 7 sec
Best cashier 4 sec 13 sec

up to four hours a day, learning number
facts and calculation procedures. He now
performs professionally. His expertise is rare
enough to be a cause of wonder (the usual
definition of prodigy).

Some of the best evidence for the pure
effects of practice comes from an exper-
iment carried out by Binet in which he
compared the performance of two pro-
fessional calculators, Inaudi and Diamandi,
with cashiers from the Bon Marché depart-
ment store in Paris, who had had 14-years
experience of calculating (there were no
mechanical calculators available in the
1890s), but who, presumably, showed no
special early gift for mathematics. He com-
pared how long it took them to carry
out multidigit multiplications. Although the
timing was about as accurate as it could have
been without voice-activated relays, it is far
from clear that the conditions were the same
for each subject, and the different subjects
were mostly given different problems to
solve. However, they were given one identi-
cal 3 -digit × 3 -digit and one 4-digit × 4-digit
problem. For these stimuli, the best cashier
was better than either calculator: As can be
seen at least one cashier was better than the
professionals, but all were better than Binet’s
students. See Ericsson, Chapter 38, on the
roles of experience and deliberate practice.

Education

Ericsson and colleagues have stressed
the importance in reaching high lev-
els of expertise of “optimal environments
for . . . children” and cite examples of par-
ents who have designed such environments
irrespective of objective evidence for innate
talent in the children (Ericsson & Charness,
1994). One can think of the Polgar sisters
in chess, the Williams sisters in tennis, Tiger
Woods in golf, and so on; Mozart grew up

in a musical household, and Picasso’s father
was himself a painter.

This optimal environment encourages
“Deliberate practice” with its “individual-
ized training on tasks selected by a qualified
teacher” and its careful monitoring and feed-
back (Ericsson, Krampe, & Tesch-Römer,
1993).

However, there are numerous reports of
calculating experts who had little education
and were entirely, or almost entirely, self-
taught. Zerah Colburn (1804–1840) was able
at the age of six to calculate the number
of seconds in 2 ,000 years (9,139,200) but
“unable to read and ignorant of the name
or properties of one figure traced on paper”
(Scripture, 1891, p. 13). Even as an adult, “he
was unable to learn much of anything, and
incapable of the exercise of even ordinary
intelligence or of any practical application”
p. 16). Scripture inferred that “calculating
powers . . . seemed to have absorbed all his
mental energy.”

Vito Mangiamele (born 1827) was the son
of a shepherd who was unable to give the
boy any instruction. According to Scripture,
“By chance it was discovered that by meth-
ods peculiar to himself, he resolved prob-
lems that seemed at the first view to require
extended mathematical knowledge” (p. 17),
for example, “What satisfies the condition
that its cube plus five times its square is equal
to 42 times itself increased by 40?” (x3 +
5x2 – 42x – 40 = 0). He found the answer to
this (5) in less than a minute when he was
ten-years old.

Zacharias Dase (1824–1861) was an
extraordinary calculator who, for a time,
assisted Gauss in calculating tables. One dis-
tinguished mathematician credited him with
“extreme stupidity.” a view that seemed to
be held also by his mathematician collabo-
rators. He knew no geometry and never mas-
tered a word of another language. “He had
one ability not present to such a great degree
in other ready reckoners. He could distin-
guish some thirty objects of a similar nature
in a single moment as easily as other peo-
ple can recognise three or four. The rapid-
ity with which he would name the number
of sheep in a herd, or books in book-case,
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or window-panes in a large house, was even
more remarkable than the accuracy of his
mental calculations” (Scripture, 1891, p. 20).
According to Mitchell, he “could count some
thirty objects at a glance” (p. 142), though it
is not clear what this had to do with his cal-
culating prowess.

Genetics

Galton’s account of the parents and off-
spring of men of eminence did not exam-
ine the potential social and educational
effects of growing up in a talented and well-
connected family. Of course, there will be
cases like D’Alembert, and those above, who
have achieved eminence despite an appar-
ently unhelpful upbringing.

Genetic studies support the idea of an
innate domain-specific system for at least
simple mathematics. A recent twin study
of mathematical abilities showed that the
concordance rates were 0.73 for monozy-
gotic and 0.56 for dizygotic pairs (Alarcon,
Defries, Gillis Light, & Pennington, 1997).
Looking at the selective deficit of mathe-
matical ability, dyscalculia, of the dyscalculic
probands, 58% of monozygotic co-twins and
39% of dizygotic co-twins were also dyscal-
culic. In a family study, it was found that
approximately half of all siblings of children
with dyscalculia are also dyscalculic, with a
risk five to ten times greater than for the gen-
eral population (Shalev & Gross-Tsur, 2001).

Another line of research has attempted
to assess whether sex-linked characteris-
tics contribute to mathematical expertise.
Benbow and colleagues have found in a
host of studies a significant advantage for
talented 12- to 13 -year-old boys over girls
at the upper end of the ability range, as
measured by SAT-M (Scholastic Apti-
tude Test – Mathematics), whereas SAT-V
(Verbal) showed no comparable difference
(see Benbow, 1988, for a review). Ben-
bow argues that the sex difference cannot
be explained in terms of “environmen-
tal” hypotheses to do with attitudes, con-
fidence, or teaching. She argues rather
that a combination of biological differences

between the sexes is the cause, in particular
a more bilateral neural representation of cog-
nitive functions in the female brain (see next
section).

The differences between boys and girls in
SAT-M performance appears to follow from
the much larger variance in boys’ scores,
which would allow reliable differences at the
top end of the range even if the mean score
for girls were higher than for boys (Becker
& Hedges, 1988). When one looks at the
means, girls in England easily outperform
boys in all subjects at all ages. There is one
exception to this general rule: mathemat-
ics. Girls are only just outperforming boys
(DfES, 2002).

On the other hand, Geary (Geary, 1996)
reviewed a wide range of industrialized
countries and showed that boys, on aver-
age, still outperform girls in mathematical
problem solving. However, even in the USA
at 17 years the average difference between
boys and girls is still only 1%. The most
recent cross-national comparisons using the
same tests in all countries, the Third Inter-
national Maths and Science Survey (TIMSS)
(Keys, Harris, & Fernandes, 1996), reinforces
the overall picture that in most countries,
including the USA, there is no statistical dif-
ference in the means, though there are enor-
mous differences among countries, suggest-
ing that educational and cultural factors are
vastly more important than gender in the
acquisition of mathematical skills.

Brain Systems for Mathematical
Expertise

There is now extensive evidence that routine
numerical tasks involve a fronto-parietal net-
work (Pesenti et al., 2000), where the pari-
etal components, perhaps especially the left
intraparietal sulcus, are relatively special-
ized for numbers (Dehaene, Piazza, Pinel,
& Cohen, 2003). It is certainly the case
that damage to the left parietal lobe can
severely affect calculation (Cipolotti & van
Harskamp, 2001), though almost nothing is
known about its effect on other mathemati-
cal domains.
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More complex calculation in relatively
non-expert subjects established that the
neural basis of simple retrieval (e.g., 3 ×
4 = ?), relative to a reading control, “engaged
a left parieto-precentral circuit representing
a developmental trace of a finger-counting
representation that mediates, by extension,
the numerical knowledge in adult,” plus a
naming network including the left anterior
insula and the right cerebellar cortex (Zago
et al., 2001). On the other hand, complex
computation (e.g., 32 × 24) engaged, addi-
tionally, a left parieto-superior frontal net-
work for holding multi-digit numbers in
visuospatial working memory along with
bilateral inferior temporal gyri, which is
implicated visual mental imagery. Corre-
lated activity in the left intraparietal sulcus
and the precentral gyrus “may reflect the
involvement of a finger movement represen-
tation network” in the calculation process.
This is not to say that these skilled adults
are counting on their fingers, but it may be
that the childhood use of fingers in learn-
ing to calculate somehow creates the neural
substrate for later acquisition of numerical
knowledge (Butterworth, 1999).

There have been very few studies of the
brain systems of expert calculators. Ben-
bow, O’Boyle, and colleagues (e.g., Alexan-
der, O’Boyle, & Benbow, 1996; O’Boyle,
Benbow, & Alexander, 1995 ; O’Boyle, Gill,
Benbow, & Alexander, 1994 ; Singh &
O’Boyle, 2004) have investigated mathe-
matically gifted children and adolescents,
with special reference to gender and brain
organization. In general, they have found
more right-hemisphere involvement in a
range of tasks, though, curiously, mathemat-
ical tasks themselves have not been studied.
Pesenti and colleagues have published data
on the brain of an expert calculator carrying
out mathematical tasks (Pesenti et al., 2001).

In a functional neuroimaging study,
Pesenti and colleagues found that the
prodigy Gamm’s calculation processes
recruited the same neural network as previ-
ously observed for both simple and complex
calculation (Zago et al., 2001), plus a sys-
tem of brain areas implicated in episodic
memory, including right medial frontal

and parahippocampal gyri, whereas those
of control subjects did not (Butterworth,
2001; Pesenti et al., 2001). Functional brain
imaging has established that speech-based
working-memory storage, of the kind that
supports standard digit-span tasks, involves
the perisylvian language areas (Paulesu,
Frith, & Frackowiak, 1993). So Gamm’s
activations here are quite different. As noted
above, it has been suggested that experts
develop a way of exploiting the unlimited
storage capacity of long-term memory to
maintain task-relevant information, such
as the sequence of steps and intermediate
results needed for complex calculation,
whereas the rest of us still rely on the very
limited span of working memory (Ericsson
& Kintsch, 1995). Gamm’s activations
are consistent with his having devel-
oped LTWM for arithmetical calculations
(Butterworth, 2001). See also Hill and
Schneider, Chapter 37, concerning brain
changes with expertise development.

Conclusions

Our starting point was Galton’s tripartite
theory of eminence: capacity, zeal, and the
ability to do a very great deal of hard work.

Starting with capacity, it is clear that
cases of individuals with exceptional math-
ematical, and especially calculating, ability
show enormous variety of cognitive abili-
ties. Some are highly intelligent, others aver-
agely intelligent, yet others are classed by
their peers (before standardized IQ test-
ing) as stupid. So the kind of general intel-
lectual capacity supposed by Galton does
not seem to apply here. Nor does our sur-
vey support Gardner’s (1983) idea of a
distinct “logical-mathematical” intelligence,
since many prodigies seem no better than
average, and indeed many are much worse
than average, in reasoning.

Zeal seems to be a characteristic common
to all the prodigies described here. They are
obsessed with numbers, treat them as famil-
iar friends, and actively seek closer acquain-
tance with them.



P1: KOD
052184097Xc32 CB1040B/Ericsson 0 521 84087 X February 27, 2006 20:52

mathematical expertise 565

They also seem to spend a great deal of
time thinking and learning about numbers,
presumably for many hours a day: all seem
to have the capacity for very hard work.
Extensive practice has an effect on memory,
as would be expected, and it is quite spe-
cific. Exceptional calculators have acquired
enormous repertories of arithmetical facts
and procedures, sometimes deliberately and
sometimes by virtue of working with num-
bers so much. In some cases, excellent arith-
metical memory goes hand in hand with very
poor memory for other materials. Working-
memory is frequently cited as a serious lim-
itation on complex mental calculation, and
eminent calculators learn or devise tricks to
reduce working-memory load.

Is their exceptional ability confined to
mathematics? Whereas some seem to excel
only in calculation, others have shown emi-
nence in fields other than mathematics.
Although there appears to be specialized
brain systems for numerical processing in
the parietal lobes, which have an innate
basis, this may have little or nothing to do
with exceptional ability. This is confirmed
by neuroimaging studies: exceptional calcu-
lators such as Gamm seem not to be activat-
ing the usual brain regions differently, but
rather recruiting new regions outside the
parietal lobes to support the current task.
There is now ample evidence for activity-
dependent plasticity: that is, that the func-
tioning, and even the structure, of brain
systems is shaped by practice and experi-
ence (Amunts et al., 1997; Pascual-Leone &
Torres, 1993 ; Schlaug, Jancke, Huang,
Staiger, & Steinmetz, 1995 ; Schlaug, Jancke,
Huang, & Steinmetz, 1995).

Ericsson and Charness (1994) have
stressed the role of systematic teaching for
promoting the deliberate practice needed
for the highest levels of expertise. This, at
least in part, is because deliberate prac-
tice is not in itself rewarding. There are, in
the biographies of mathematical prodigies,
many counterexamples to this claim, where
precocity in mathematics could be nurtured
in a systematic way, whereas others appear
to have acquired exceptional mathematical
skills despite very unhelpful early conditions.

It may be that finding solutions to
mathematical problems is, for the zealous,
intrinsically rewarding. It may also be that
the domain of mathematics is so ordered
that it is propitious for unsupervised learn-
ing since it is easy to check an answer by
using a different method. Many prodigies
report external rewards also – amazing their
friends and family. This may be especially
relevant in the savant, or near-savant cases,
where there may be few ways to gain the
admiration of other people. Perhaps this is
why parallels between music and mathemat-
ics are noticed. Both have intrinsic rewards
that are propitious for unsupervised learn-
ing. In music, one can hear whether some-
thing sounds right or not – there is harmony
or there is discord. And there are exter-
nal rewards that do not require a teacher,
namely, that other people readily appreciate
good playing or singing.

Finally, are exceptional calculators born
or made? There is ample evidence for zeal
and hard work, and it may be that we are
born with dispositions toward them. Charles
Darwin, in a letter to Galton, wrote “I have
always maintained that excepting fools, men
did not differ much in intellect, only in zeal
and hard work; I still think this an eminently
important difference” (quoted by Ericsson &
Charness, 1994). It may also be the case that
some of us are born with a disposition to
enjoy or even be obsessed with an orderly
domain like mathematics. However, there is
no evidence at the moment for differences in
innate specific capacities for mathematics.
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C. (1993). The role of deliberate practice in the
acquisition of expert performance. Psychologi-
cal Review, 100, 363–406.

Galton, F. (1979). Hereditary Genius: An Inquiry
into its Laws and Consequences (Originally
published in 1869). London: Julian Friedman
Publishers.

Gardner, H. (1983). Frames of Mind: The The-
ory of Multiple Intelligences. New York: Basic
Books.

Geary, D. C. (1996). Sexual selection and sex dif-
ferences in mathematical abilities. Behavioral
and Brain Sciences, 19, 229 et seq.



P1: KOD
052184097Xc32 CB1040B/Ericsson 0 521 84087 X February 27, 2006 20:52

mathematical expertise 567

Gelman, R., & Gallistel, C. R. (1978). The Child’s
Understanding of Number (1986 ed.). Cam-
bridge, MA: Harvard University Press.

Girelli, L., & Delazer, M. (1996). Subtraction
bugs in an acalculic patient. Cortex, 32 , 547–
555 .

Goel, V., & Dolan, R. J. (2004). Differential
involvement of left prefrontal cortexin induc-
tive and deductive reasoning. Cognition, 93(3),
B109–B121.

Gruber, O., Indefrey, P., Steinmetz, H., & Klein-
schmidt, A. (2001). Dissociating neural corre-
lates of cognitive components in mental calcu-
lation. Cerebral Cortex, 11, 350–359.

Hardy, G. H. (1969). A Mathematician’s Apol-
ogy (Originally published in 1940). Cambridge:
Cambridge University Press.

Hauser, M., MacNeilage, P., & Ware, M. (1996).
Numerical representations in primates. Pro-
ceedings of the National Academy of Sciences,
USA, 93 , 15 14–15 17.
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