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Rapid communication

Understanding the real value of fractions and decimals

Teresa Iuculano and Brian Butterworth

Institute of Cognitive Neuroscience, University College London, London, UK

Understanding fractions and decimals is difficult because whole numbers are the most frequently and
earliest experienced type of number, and learners must avoid conceptualizing fractions and decimals
in terms of their whole-number components (the “whole-number bias”). We explored the understand-
ing of fractions, decimals, two-digit integers, and money in adults and 10-year-olds using two number
line tasks: marking the line to indicate the target number, and estimating the numerical value of a mark
on the line. Results were very similar for decimals, integers, and money in both tasks for both groups,
demonstrating that the linear representation previously shown for integers is also evident for decimals
already by the age of 10. Fractions seem to be “task dependent” so that when asked to place a fractional
value on a line, both adults and children displayed a linear representation, while this pattern did not
occur in the reverse task.

Keywords: Fractions; Decimals; Mathematical cognition; Number line; Mathematical education.

A variety of studies have found that children have
difficulty understanding fractions and decimals
(Bright, Behr, Post, & Wachsmuth, 1988; Ni &
Zhou, 2005). In these tasks, children treat fractions
and decimals in terms of their whole-number com-
ponents, sometimes termed the “whole-number
bias” (Ni & Zhou, 2005). This is not surprising
since learners have to make a large conceptual
leap from thinking of numbers as integers (Smith,
Solomon, & Carey, 2005). The transition from a
system where numbers are used for counting to
one that uses proportions can be problematic
in late adolescence (Hoyles, Noss, & Pozzi, 2001)
and even for educated adults (Bonato, Fabbri,
Umiltà, & Zorzi, 2007; but see Schneider &

Siegler, 2010). In the study by Bonato et al.
(2007), when participants were asked to compare
the real values of two fractions—for example, 1/8
versus 1/7—they typically used a strategy that
relied on comparing the integer values of the
numerator or the denominator rather than comput-
ing the real value of the fraction. A similar whole-
number bias is evident in children aged 8–11 years
when asked to select the larger of two decimal
number pairs: .65 versus .8 (Rittle-Johnson,
Siegler, & Alibali, 2001; Smith et al., 2005).

This is analogous to the comparison of double-
digit numbers, which are also processed in a com-
ponential manner—that is, responses are quicker
and more accurate if both the unit and the decade
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of one number are larger—for example, determin-
ing whether 57 is larger than 42 is easier than 62
versus 47 (Nuerk, Weger, & Willmes, 2001).

Although adults prefer to rely on the compari-
son of the single components, the real value of frac-
tions can be accessed (Meert, Grégoire, & Noël,
2009), and neuroimaging studies have shown that
specific populations of neurons in the parietal and
frontal cortices are tuned to the real value of frac-
tional stimuli (Ischebeck, Schocke, & Delazer,
2007; Jacob & Nieder, 2009).

So far, the experimental studies investigating
the representation and processing of fractions
have used number comparison paradigms where a
componential strategy is effective and is presumably
easier than calculating the real value of two
fractions, storing the value in working memory,
and then comparing the two results. Thus per-
formance may not directly reflect the underlying
representations.

In the present study, we aim to control for these
potential confounds by implementing a number
line task in which participants have to place a
mark on a physical line to denote the magnitude
of the number presented. This is a variant of the
classic “thermometer task” used for the quick clini-
cal evaluation of numerical competence in neurop-
sychological patients (van Harskamp, Rudge, &
Cipolotti, 2002). Also, it is commonly used in the
educational and developmental literature, usually
with subdivisions marked and often as a forced-
choice task (Bright et al., 1988; Rittle-Johnson
et al., 2001), and most recently to investigate the
representational change of magnitudes given in
proportional notations (Opfer & DeVries, 2008).
Additionally, we also use the opposite manipu-
lation where participants see a hatch mark on a
line and are asked to report the numerical value

(Siegler & Opfer, 2003). Our procedure differs
from these previous studies that exploit number
line tasks in the fact that we use a computerized
version enabling us to record both accuracy and
reaction times.

Moreover, the novelty of this study lies in using
a paradigm that consists of four different types of
numerical representation, not only fractions (e.g.,
1/3, Bright et al., 1988) or decimals (e.g., 0.33,
Rittle-Johnson et al., 2001), but also proportional
equivalents as two-digit whole numbers (e.g., 33)
or as money (33p). Finally, to reduce an advantage
for a componential strategy, we used fractions
without common components, and we define the
end points of the number line by 0 and 1 for frac-
tions and decimals, rather than by fractional stimuli
(“0/3” and “3/3”; Opfer & DeVries, 2008).

Moreover, we test adults and children, enabling
us to plot developmental trends of the proportional
numerical reasoning abilities for these types of
numbers.

Method

Participants
Adults. A total of 18 university students from a
variety of academic backgrounds1 (7 males, mean
age= 24.3 years; SD= 6.74) took part. All except
one were right-handed, and all reported normal
or corrected-to-normal vision.

Children. A total of 19 normal-achieving children
in their sixth year of schooling recruited from two
different middle schools in London (7 males,
mean age= 10.83 years; SD= 0.23) took part.
All children were screened for learning disabilities
on a range of numerical and cognitive tasks.

1 The level of mathematical education was taken into account. Participants were divided into three subgroups: no maths A-level,

maths A-level, and maths at university level. The slope (β1 value) of the regression equation Y= β0+ β1x of the linear model was taken

as an index of representational acuity. The more the β1 value deviates from 1, the less accurate the estimate. A 4 (notation condition)×
3 (education groups) mixed model analysis of variance was performed. In the number to position (NP) task, there was no main effect of

notation condition, F(3, 45; ε= .672)= 0.796, p= .461, η2= .05, no main effect of group, F(2, 15)= 2.553; p= .111, η2= .25, and

no significant interaction, F(3, 45; ε= .672)= 0.340, p= .851, η2= .043. Similarly, in the position to number (PN) task, none of the

effects was significant: notation condition, F(3, 42; ε= .339)= 0.225, p= .647, η2= .016, group, F(2, 14)= 0.893, p= .432,

η2= .113, and interaction, F(3, 42; ε= .339)= 1.22, p= .325, η2= .148. The three subgroups were therefore merged into one

group for subsequent analyses.
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Apparatus
Two complementary estimation tasks were used,
number to position (NP) and position to number
(PN; see Siegler & Opfer, 2003).

In the NP task, participants were instructed to
move the cursor to the desired position using a
mouse on a fixed-length line presented on the com-
puter screen. The number-line coordinates for par-
ticipant responses were recorded in terms of pixel
count along the length of the line. In the PN
task, participants were required to type numbers
into onscreen boxes. All participants were tested
using the same computer (model: Asus m68 00n
wide-screen), which has a dot pitch of 0.282 mm.

Each problem involved a line with the left end
labelled “0” and the right end labelled “1” or
“100” or “£1” depending on the notation condition.
The right label changed to conceptually match the
notation session, whilst preserving the scaling. The
left to right orientation was similar to that in pre-
vious studies (Siegler & Opfer, 2003; van
Harskamp et al., 2002) and is thought to reflect
the orientation of the mental number line in
Western subjects (Dehaene, Bossini, & Giraux,
1993).

Four stimulus notation conditions were used in
the NP task: fractions (e.g., 1/4), integers (e.g.,
25),2 decimals (e.g., 0.25), and money (e.g., 25p).
The numerical values of the fractions were all ,1
and were evenly distributed on the number line:
1/20, 1/9, 1/6, 1/5, 2/9, 1/4, 2/7, 1/3, 2/5, 4/9,
1/2, 4/7, 3/5, 13/20, 5/7, 3/4, 7/9, 5/6, 6/7, 19/
20. The stimuli for the decimals and money nota-
tion conditions were selected so that they
matched an approximation of the numerical
values of the fraction stimuli (e.g., 0.1 for 1/9).
Stimuli for the integers condition matched in
scale the numerical values of the fraction stimuli
(e.g., 25; Figure 1A).

In the PN task, the same four notation con-
ditions were used with marks on the line corre-

sponding to the numerical values in the NP task.

For instance, in the fractions condition, partici-

pants would have to assess the fractional value of

a mark corresponding to 1/4, by freely choosing
their estimate from the infinite spectrum of possible
fractions (Figure 1B).

Procedure
In the NP task, a line marked with the minimum
and maximum values at either end was presented
in the centre of the screen simultaneously with a
target, centrally positioned on the top of the line.
Participants were required to indicate the corre-
sponding position of the target on the line.
Participants responded by selecting the appropriate
position using a mouse whose cursor starting point
was not fixed (Figure 1A).

In the PN task, participants were presented with
the same number-line as that in the NP task, with a
hatch mark indicator bisecting the line at locations
that corresponded to the numerical values used
in the NP task. Participants were asked to estimate
the value corresponding to the marked position on
the line expressed as a fraction, integer, decimal,
or money amount (Figure 1B). Participants
responded by typing their answer into a box on
the screen.

Participants responded at their own pace and
were allowed to correct their responses. This
study was composed of a single block for each of
the four notation conditions (20 stimuli each).
Stimulus presentation was randomized within
each set; order of tasks and notation conditions
were counterbalanced across participants.

Results

Regression analyses
Regression analyses were performed on partici-
pants’ mean estimates3 plotted against the actual
values of the target stimuli separately for each task.

To identify the best fitting model, paired-
sample t tests were applied on the residuals of the
regression models of interest: linear and logarith-
mic for the NP task; linear and exponential for
the PN task (Siegler & Opfer, 2003).

2 By “integer” we mean here non-negative whole numbers.
3 Individual estimates displayed identical results to the group mean (e.g., Moeller, Pixner, Kaufmann, & Nuerk, 2009).
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Figure 1. Example stimuli for both tasks: (A) number to position (NP), and (B) position to number (PN).
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Adults. In the NP task, the linear model was
significantly the best model for all notation con-
ditions: fractions, t(19)= –2.74, p, .05; integers,

t(19)= –4.6, p, .001; decimals, t(19)= –5.55,
p, .001; and money, t(19)= –5, p, .001
(Figure 2A).

Figure 2.Adults. Average location of estimates regressed against value of the stimulus for each of the four notation conditions for both tasks: (A)

number to position (NP); (B) position to number (PN). In black: equation and best fitting line of the linear model. In grey: (A) equation and

best fitting line of the logarithmic model; (B) equation and best fitting line of the exponential model. (A) Top left: in the fractions notation

condition, all stimulus estimates fit well on the linear function (y= x) with no distinction between familiar and unfamiliar fractions (e.g.,

1/2 vs. 3/5).
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In the PN task, the linear model was the best
fitting model for integers, t(19)= –4.24,
p, .001; decimals, t(19)= –2.61, p, .05; and
money, t(19)= –4.05, p, .01, but not for frac-
tions, t(19)= –0.62, p= .54; Figure 2B).

Children. In the NP task, the linear model was
significantly better than the logarithmic model
for all notation conditions: fractions, t(19)= –3.6,
p, .01; integers, t(19)= –4.9, p, .001; decimals,
t(19)= –4.4, p, .001; and money, t(19)= –4.67,
p, .001 (Figure 3A).

In the PN task, the linear model was the best
fitting model for integers, t(19)= –4.24, p, .001;
decimals, t(19)= –2.65, p, .05; and money,
t(19)= –4.52, p, .001; but not for fractions,
t(19)= –1.24, p= .23 (Figure 3B).

Accuracy and reaction time analyses
A 4 (notation condition)× 2 (age group) mixed
model analysis of variance (ANOVA) was per-
formed. Pairwise comparison analyses were
adjusted for multiple comparisons (Bonferroni
corrected). Due to violations of sphericity,
Greenhouse–Geisser corrections were applied to
all factors with more than two levels (Keselman &
Rogan, 1980).

Accuracy. Accuracy analyses were performed on
deviants. A deviant was defined as the absolute
value of the subtraction between the participants’
response and the target value (in pixels on the line).

In the NP task, the analyses revealed a main
effect of notation condition, F(3, 114;
ε= .543)= 89.113, p, .001, η2= .701: The frac-
tions notation was significantly less accurate than
the other notations (p, .001). There was also
a main effect of group, F(1, 38)= 57.194;
p, .001, η2= .601, and a significant interaction,
F(3, 114; ε= .543)= 30.81; p, .001, η2= .448:
The children group displayed lower accuracy than
the adults group in the fractions and decimals nota-
tions (p, .005; Figure 4A).

In the PN task, both main effects were signifi-
cant in the same direction as that for the NP task:
notation condition, F(3, 114; ε= .355)= 119.57,
p, .001, η2= .759, and group, F(1, 38)=

89.682, p, .001, η2= .702 (Figure 4B). The
interaction was also significant, F(3, 114;
ε= .355)= 56.734; p, .001, η2= .599: The chil-
dren group was significantly less accurate than the
adults group in all notation conditions, except dec-
imals (p= .117; Figure 4B).

Reaction times (RTs). These analyses were performed
on median RTs.. In the NP task, both main
effects were significant: notation condition, F(3,
114; ε= .679)= 60.813, p, .001, η2= .615—
the fractions notation was significantly slower
than the other notations (p, .001)—and group,
F(1, 38)= 8.011, p, .01, η2= .174. The inter-
action was also significant, F(3, 114; ε= .679)=
10.291, p, .001, η2= .213: The two groups dif-
fered in their speed of responses in all notation con-
ditions, except fractions (p= .146; Figure 5A).

In the PN task, both main effects were also sig-
nificant: notation condition, F(3, 114; ε= .597)=
145.35, p, .001, η2= .793—the fractions nota-
tion was performed significantly slower than the
other notation conditions (p, .001)—and group,
F(1, 38)= 45.297, p, .001, η2= .544, while the
interaction was not significant, F(3, 114;
ε= .597)= 2.881, p= .069, η2= .07 (Figure 5B).

Discussion

In this study, we investigated how children and
adults understand and represent the real value of
four different types of multidigit number notations:
fractions, integers, decimals, and money. It has
been proposed that children are characterized by
several mental representations of numbers
(Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi,
2010), and that the “representational starting kit”
is characterized by a logarithmic mental represen-
tation of numbers that progresses to a linear rep-
resentation over the course of development
(Siegler & Opfer, 2003). Since previous investi-
gations have only used natural numbers from 0 or
1 upwards, we asked whether this transition
applies to alternative ranges and types of numbers.

Previous research has found that fractions and
decimals are difficult for children and even well-
educated adults (Bonato et al., 2007), so it is
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possible that although 10- to 11-year-olds have
linear representations for integers (Siegler &
Opfer, 2003), they may still represent the value of

fractions and decimals in a nonlinear manner.
Indeed, it has been shown that 8-year-olds display-
ing a logarithmic representation for integers are

Figure 3.Children. Average location of estimates regressed against value of the stimulus for each of the four notation conditions for both tasks: (A)

number to position (NP); (B) position to number (PN). In black: equation and best fitting line of the linear model. In grey: (A) equation and best

fitting line of the logarithmicmodel; (B) equation and best fitting line of the exponentialmodel. (A) Top left: in the fractions notation condition, all

stimulus estimates fit well on the linear function (y= x) with no distinction between familiar and unfamiliar fractions (e.g., 1/2 vs. 3/5).
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facilitated in estimation tasks using fractions with a
fixed numerator or denominator (Opfer &
DeVries, 2008). No studies thus far have investi-
gated the development of fraction and decimal
representations in children who display a linear
representation for integers and were formally intro-
duced to the concept of fractions in school.

Our study tested the possible models of number
line representations—linear, logarithmic, and

exponential—in two number line estimation tasks,
which used a variety of numerators and denomi-
nators. For the NP task, the best fitting model for
both groups was linear, and never logarithmic for
any notation including fractions. Thus, even if a
developmental transition exists from a compressed
(i.e., logarithmic) to a linear representation of
numerical values, it is already implemented by the
age of 10 for all number notations.

Figure 4. Accuracy in terms of the absolute deviation from correct responses (in pixels) plotted against age group for both tasks: (A) number to

position (NP); (B) position to number (PN). Black asterisks represent significant differences between notation conditions: *p, .05, **p, .005.

Grey asterisks represent significant differences between groups: *p, .05, **p, .005. Error bars indicate 1 standard error of the mean (SEM).
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Figure 5. Reaction times (seconds) plotted against age group for both tasks: (A) number to position (NP); and (B) position to number (PN).

Black asterisks represent significant differences between notation conditions: *p, .05, **p, .005. Grey asterisks represent significant differences

between groups: *p, .05, **p, .005. Error bars indicate 1 standard error of the mean (SEM).
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Additionally, we investigated the accuracy of
numerical estimation by measuring actual devi-
ations from correct responses. In the NP task, we
showed high accuracy in all notations (deviation
from correct responses range between 0.039 and
0.15 pixel counts). However, the mapping of frac-
tions led to significantly more errors than the
other notations, even for adults, whilst accuracy
for decimals was nearly the same as that for the
integers and money notations (Figure 4A).
Furthermore, the processing of fractional stimuli
took twice as long as the other formats.

The PN task was considerably more demanding,
as shown by both accuracy (Figure 4) and reaction
times, which were approximately twice as long
(Figure 5). Some of the additional time could
have been the result of choosing the numbers to
type in, or the action of typing into two separate
cells (fractions condition). Nevertheless, the linear
model was better than the logarithmic model for
both adults and children for integers, money, and
decimals, but not fractions.

These results shednew light on theunderstanding
the real value of rational numbers. It has been pre-
viously observed in number comparison tasks that
when processing fractions (Bonato et al., 2007; Ni
& Zhou, 2005) and decimals (Rittle-Johnson et al.,
2001), both adults and children are subject to a
“whole-number bias” (Ni & Zhou, 2005) where
they treat fractions in a componential manner. By
using number line tasks and stimulus design that
does not encourage componential strategies, we
show that, at least when they are given a numerical
stimulus to map onto a defined physical space, both
adults and children can access and correctly represent
(i.e., linearly) the real value of fractions and decimals
and process them in a holistic way. However, when a
spatial cue has to be translated into a numerical value,
fractional but not decimal stimuli require greater
effort, and the mapping is not linear for either of
the groups. This is compatible with the idea that
when allowed or encouraged by the task, the use of
componential strategies might be preferred to the
access of the numerical value of the fraction (Kallai
& Tzelgov, 2009).

Furthermore, the different results obtained using
the two different approaches to the investigation of

the representation and processing of rational
numbers (i.e., number comparison paradigms and
number line tasks) could be interpreted using a
more general theoretical framework, which con-
trasts two generic modes of cognitive functions
(Kahneman, 2003)—an intuitive mode in which
judgements and decisions are made automatically
and rapidly (which could be the process associated
with number comparison tasks), and a control
mode, which is deliberate and slower (to be linked
with the number line estimation tasks used here).

In conclusion, the timed number line tasks used
here offer a precise method for assessing number
understanding. They demonstrate that fractions,
but not decimals, are more difficult to mentally
manipulate than other number notations, as
shown by the accuracy and reaction time data.
Yet, we show for the first time that, when partici-
pants are asked to place a numerical value on the
number line, a linear representation is evident
already in children by the age of 10 for both frac-
tional and decimal stimuli. The same is not entirely
true for the position to number task, where frac-
tional stimuli do not yield linear responses and
never seem to make the transition from exponential
to a linear representation even with experience.

Finally, the current design of these tasks offers a
novel and simple approach for assessing another
aspect of number understanding in children and
adults who are suspected of suffering from arithme-
tical learning disabilities, such as developmental
dyscalculia.
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