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The present study investigated the development and influence of working memory abilities (WM) and number
sense (NS) on mathematics achievement in junior high school students (grades 7–9, N = 267). Math achieve-
ment was measured by three sectional examinations in a semester, NS was indicated by an approximate
numerosity system task, and WM was assessed by a battery of four tasks. Developmental trends in both WM
and NS task scores were observed. Memory updating (MU) in the WM tasks was found to be dominant in
predictingmath achievement in correlation and regression analyses. A similar pattern was observed for separate
analyses across grade levels, except that in grade 7 a significant unique contribution of NS to math was observed
after takingMU into account. The findings suggest thatWM ability (especially that used inMU task) had greater
influence on math achievement than NS.
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1. Introduction

Basic mathematical ability is of critical importance for high school
students. It is fundamental for learning science in school andpoormath-
ematical ability is a serious handicap in the workplace and in daily life
(Bynner & Parsons, 1997; Parsons & Bynner, 2005). A UK study found
that poor levels of mathematical ability are a major cost to society
(Gross, Hudson, & Price, 2009), and improvements in national levels of
mathematics ability promote economic growth (OECD, 2010). The ju-
nior high school students (grades 7–9) tested in the present study
were required to be competent in a wide range of mathematical topics,
such as linear and quadratic equations, formulas for polynomials and
square roots, similar geometrical figures, properties of triangles, and
probability. Mathematics attainment has been shown to be related to
a wide range of cognitive and perceptual abilities including number
sense, visuo-spatial ability, and the domain-general ability to maintain
ychology, National Chengchi
an.
and manipulate information, usually labeled working memory (WM)
and executive functions (e.g., Chen & Li, 2014; De Smedt, Noël,
Gilmore, & Ansari, 2013; Fazio, Bailey, Thompson, & Siegler, 2014;
Raghubar, Barnes, & Hecht, 2010; for a review). Nevertheless, there is
some evidence of domain-specificity in WM (Butterworth, Cipolotti, &
Warrington, 1996; Iuculano,Moro, & Butterworth, 2011), and it ismain-
taining andmanipulating numerical information that is linked to math-
ematical attainment, at least for 8- and 9-year-old children (Iuculano et
al., 2011). However, research about the contribution of number sense
(NS) andWM tomath performancemainly focuses on preschool and el-
ementary students (e.g., De Smedt et al., 2013; Friso-van den Bos, van
der Ven, Kroesbergen, & van Luit, 2013; Halberda & Feigenson, 2008;
Iuculano et al., 2011); there is little evidence about which of these fac-
tors is of particular importance to attainment in junior high school.
The aim of the present study was to investigate the role of NS and as-
pects of WM on individual differences in math achievement in junior
high school students.
1.1. Number sense and mathematics

Number sense (NS) is the ability to represent and manipulate nu-
merical quantities (Dehaene, 2001). It is held to reflect the operation
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Fig. 1. Experimental procedure for the number sense (NS) task (an example based on the paradigm used by Halberda et al. (2008)).
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of the Approximate Number System (ANS, sometimes called the Ana-
logue Magnitude System), which makes approximate estimates of the
numerosity of a visual display and maps them onto compressed over-
lapping analog representations. The operation of NS is present in
human infants and in many other species (Nieder & Dehaene, 2009).
In the literature, NS is typically assessed by the ability to select the larger
of two arrays of dots, often with the spreading areas of the dots con-
trolled. One standard procedure requires selecting the more numerous
of two intermixed arrays of blue and yellow dots (see Fig. 1). Typically,
individual differences are assessedpsychometrically in termsof thepro-
portional differences in quantities between two sets of dots an individ-
ual can reliably discriminate, as in Halberda, Mazzocco, and Feigenson
(2008). Halberda and Feigenson (2008) documented an increasing
trend in NS acuity from age 3–6 years to adulthood. Similarly, from a
large online assessment from age 11–85 years, Halberda, Ly, Wilmer,
Naiman, and Germine (2012) observed developmental improvement
peaking around 30 years old.

Halberda et al. (2008) were the first to discover that an individual's
psychometric function, called numerical acuity (here expressed as an
“internal Weber fraction” to capture the idea that the internal neural
representations of numerosity are log compressed), correlates with ar-
ithmetical ability. Sixty-four children, aged 14 years and without learn-
ing disabilities, participated in their study. Sets of math achievement
tests were collected annually from their kindergarten years up to
grade 6 (ages 5–11). Positive correlations were observed between nu-
merical acuity assessed at 14 and mathematics test scores in each of
the early years, suggesting that NS was highly associated with math
achievement. In addition to the retrospective correlation found by
Halberda et al. (2008), Libertus, Feigenson, and Halberda (2011) also
documented a positive correlation between numerical acuity and
math ability in 200 children aged 3–5 years. Similarly, Mazzocco,
Feigenson, and Halberda (2011) found that numerical acuity measured
in children aged 3 or 4 years can predict math performance two years
later (see also Gilmore, McCarthy, & Spelke, 2010).

These studies suggest a stable relationship between NS and school
mathematics performance from children aged 3–11 years3. However,
whether NS is still relevant in the later stages in school has remained
3 It should be noted that in the study ofHalberda et al. (2008), NS acuitywas assessed at
age 14 and correlated with math achievement assessed annually from ages 5–11.
unclear. The relationship between NS and mathematics performance
was not consistently observed in the literature. For instance, Libertus,
Odic, and Halberda (2012) observed a positive correlation between NS
acuity and test scores in the Quantitative section of the Scholastic Apti-
tude Test (SAT). In the large online assessment, Halberda et al. (2012)
also found that NS precision correlated with self-reported mathematics
performance in school and SAT-Quantitative scores. However, Wei,
Yuan, Chen, and Zhou (2012) showed that while spatial abilities corre-
lated with advanced math concepts of undergraduate students, basic
numerical processing did not. Several other studies failed to find the sig-
nificant correlations between approximation skills and math achieve-
ment from childhood to adulthood (e.g., De Smedt et al., 2013; Inglis,
Attridge, Batchelor, & Gilmore, 2011; Iuculano, Tang, Hall, &
Butterworth, 2008).

The inconsistencies in the contribution of NS to math achievement
may result from different measures of NS used in particular studies.
Inglis and Gilmore (2014) compared four major measures of NS acuity
(Weber fraction, accuracy, and numerical ratio effect – consisting of ac-
curacy and RT), and found that accuracy measure was more reliable
than Weber fraction, which was better than the two measures for nu-
merical ratio effect. However, in the review of De Smedt et al. (2013),
no patterns associated with differences in measures emerged from
studieswith positive and negative results. In addition, inconsistent find-
ingsmay stem from the fact that NSwas assessed by various types of ap-
proximation tasks in different studies. For instance, Xenidou-Dervou, De
Smedt, van der Schoot, and van Lieshout (2013) found that the contri-
bution of non-symbolic approximation to math achievement in pre-
schoolers was mediated by symbolic approximation. Mundy and
Gilmore (2009) found that the mapping ability between symbolic and
non-symbolic numerical representations predicted math attainment in
children aged 6–8 years, above and beyond symbolic and non-symbolic
tasks alone.

In junior high school, students start learning a wide range of compli-
cated mathematical concepts and dealing with mathematical problems
involving problem solving beyond simple calculations (Best, Miller, &
Naglieri, 2011). Although a correlation between NS precision for junior
high school students and their self-reported math performance in
schoolwas observed in the online study of Halberda et al. (2012), the re-
lationship between NS and math performance has mainly been investi-
gated with either younger children or adults as reviewed above (see
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also De Smedt et al., 2013 for a review). Our research wasmotivated by
the fact that there were only a few studies investigating the develop-
mental trend in NS and its role in math performance in adolescence.
In the present study, we aimed to bridge the missing gap by examining
the role of NS on individual differences in junior high school students'
math achievement.

1.2. Working memory and mathematics

The math curriculum in junior high school goes beyond simple nu-
merical tasks, and involves complex multi-step operations on numbers,
symbols, and spatial configurations. Thus, the three components of
working memory (WM) proposed by Baddeley and Hitch (1974) may
be involved. Specifically, phonological loop and visuo-spatial sketchpad
are responsible for maintaining verbal and visuo-spatial information,
respectively, for further processing. The central executive (CE) compo-
nent was proposed to allocate cognitive resource and coordinate these
two slave systems.

Several studies have found that the CE is a key component related to
math attainment (Bull & Scerif, 2001; Cragg & Gilmore, 2014; Iuculano
et al., 2011; Van der Ven, Kroesbergen, Boom, & Leseman, 2012). In par-
ticular, sub-functions of the CE all play a role in math performance:
inhibiting irrelevant information or suppressing inappropriate strategies
(e.g., Bull & Scerif, 2001; Gilmore et al., 2013; St Clair-Thompson &
Gathercole, 2006), shifting between mental sets, operations, and strate-
gies (e.g., Bull & Scerif, 2001; Yeniad, Malda,Mesman, van IJzendoorn, &
Pieper, 2013), and updating information (e.g., Bull & Scerif, 2001; Van
der Ven et al., 2012) in WM. Among the three CE sub-functions,
updating consistently plays an important role in math performance
(e.g., Kolkman, Hoijtink, Kroesbergen, & Leseman, 2013; Lechuga,
Pelegrina, Pelaez, Martin-Puga, & Justicia, 2016; Van der Ven et al.,
2012). In a meta-analysis comparing tasks probing the two slave sys-
tems and the three sub-functions of CE, Friso-van den Bos et al. (2013)
found that the correlation with math performance was the highest for
updating task with verbal material, followed by updating with visuo-
spatial material, visuo-spatial sketchpad, phonological loop, inhibition,
and shifting tasks. However, variations existed for different types of
mathematics measures. The national curriculum tests, composite mea-
sures or teacher ratings had higher correlations with WM components
than other mathematics measures such as counting and basic under-
standing of numerical concepts, simple arithmetic, advanced arithmetic,
and word problems. These results are consistent with claims in Best et
al. (2011). They proposed that general mathematical problem solving
involves strategy formulation and self-monitoring, and depends more
on CE functions than calculation.

Differential developmental trends have been observed for different
WM components. Gathercole, Pickering, Ambridge, and Wearing
(2004) demonstrated that performance of WM tasks improved from
years 4 to 15. However, developmental trends in tasks with increasing
demands on WM reached asymptote at later ages (e.g., the ability of
maintenance and manipulation of multiple spatial units improves
until 13–15 years old; self-organization strategy advances until 16–
17 years old; Luciana, Conklin, Hooper, & Yarger, 2005). Linares, Bajo,
and Pelegrina (2016) further showed age-related difference in sub-
functions of CE in 4 age groups (i.e., 8-, 11-, 14-, and 21-year-olds). As
WM ability progresses in information processing, the contribution of
different WM components to math achievement varies across grade
levels for different math problems as well. For example, Holmes and
Adams (2006) found that CE had consistent and large contribution on
curriculum-based math assessment for both grades 3 and 5 (abbreviat-
ed as G3 and G5). Phonological loop did not predict math achievement
above and beyond CE and visuo-spatial sketchpad, except for the signif-
icant correlationwithmental arithmetic for G5, presumably because G5
used subvocal rehearsal for retention of intermediate results. On the
other hand, younger children (G3) relied on visuo-spatial sketchpad
when solving mathematics problems while older children resorted to
it in difficult problems. Similarly, De Smedt et al. (2009) also found
that CE predicted math achievement for both G1 and G2, while phono-
logical loop and visuo-spatial sketchpad were better predictors for G2
and G1, respectively. Furthermore, in the meta-analysis of Friso-van
den Bos et al. (2013), there was a negative correlation between age of
the sample (4–12 years) and effect size of visuo-spatial sketchpad on
math performance, while the correlation was positive between age
and effect size of updating with visual material. It is possible that the
updating ability is more important in solving more complicated math
problems. In a recent study (Han, Yang, Lin, & Yen, 2016), memory
updating (MU) ability for numerical and spatial operations was found
to highly correlate with the accuracy of multi-digit mental multiplica-
tion in young adults, especially with the complex problem like a two-
digit number multiplied by a two-digit number (e.g., 35 × 67) rather
than an easier problem like a two-digit number multiplied by a one-
digit number (e.g., 35 × 4). Further evidence also showed that, for 14-
year-old children, achievements in mathematics and science were
strongly correlated with complex WM test scores, such as measures
on the CE capacities (backward digit recall and listening recall) and
the phonological loop (word list recall and word list matching)
(Gathercole, Pickering, Knight & Stegmann, 2004). All of these results
support the role of WM ability in complex math performance.

Although the development in WM itself has been investigated from
as young as 4 years to early 20s (e.g., Gathercole, Pickering, Ambridge et
al., 2004; Linares et al., 2016; Luciana et al., 2005; Swanson, 1996), age-
related differences in the contribution of WM to math achievement in
most studies were examined before high school education stages (see
Raghubar et al., 2010, for a review). In the present study, we further ex-
amined the role of different aspects of WM in math achievement of ju-
nior high school students aged 13–15 years. Many studies have shown
that complex span tasks have higher correlations with measures of
higher-order cognition than simple span tasks (e.g., Conway, Cowan,
Bunting, Therriault, & Minkoff, 2002; Conway & Engle, 1996; Engle,
Tuholski, Laughlin, & Conway, 1999; Unsworth & Engle, 2005, 2007;
Unsworth, Redick, Heitz, Broadway, & Engle, 2009). Correlation be-
tween performances of complex span and standardized mathematics
test has also been reported in the literature (e.g., Bayliss, Jarrold,
Gunn, & Baddeley, 2003). In addition, as aforementioned, updating
was associated with math attainment (e.g., Lechuga et al., 2016; Van
der Ven et al., 2012). As these two types of WM tasks demand the CE
component of WM, they were found to correlate with each other
(Schmiedek, Lövdén, & Lindenberger, 2014; Wilhelm, Hildebrandt, &
Oberauer, 2013). Nevertheless, differences exist between these two
tasks. In a complex span task, participants have to maintain a set of
items (e.g., a series of letters) interleaved with performing another
task (e.g., arithmetic judgment in the operation span task, Turner &
Engle, 1989). Thus, participants have to switch between memorizing
the items and processing an irrelevant task. Conversely, in an updating
task, participants keep updating several items (i.e., substituting outdat-
ed itemswith the encoding of new items). In some versions of updating
tasks, transformation (e.g., arithmetic operation or mental rotation) is
required (Ecker, Lewandowsky, Oberauer, & Chee, 2010). Contrary to
the complex span task, there is no unrelated secondary task to be proc-
essed. As both tasks are associated with math performance, in the pres-
ent study, aWMbattery (Lewandowsky, Oberauer, Yang, & Ecker, 2010)
including both tasks was adopted to investigate the relationship be-
tween WM and math performance of junior high school students.
1.3. Number sense versus working memory

Although both NS and WM abilities have been shown to correlate
with mathematics achievement, it has been argued that NS was not im-
plicated in number reasoning and arithmetic (Butterworth, 2010). Thus,
it remains unclear whether NS is a good predictor for the skills needed
for reasoning and manipulation of numbers or spatial configuration.
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Xenidou-Dervou, van Lieshout, and van der Schoot (2014) found
that performing the NS task demanded WM. In their study, children
aged 5–6 years performed the NS task with a secondaryWM task (sep-
arately for phonological loop, visuo-spatial sketchpad, and CE). The re-
sults showed that the CE task had the largest interference, indicating
that WM, especially CE function, was involved in NS. In addition,
Hassinger-Das, Jordan, Glutting, Irwin, and Dyson (2014) found that
CE was a partial mediator between NS assessed during kindergarten
and three measures (i.e., applied problems, calculation, and NS)
assessed at grade 1. However, with confirmatory factor analyses and
structural equation modeling, Xenidou-Dervou et al. (2013) found
that the approximation task performance of kindergarteners contribut-
ed to math performance (counting and addition) above and beyond
WM, and vice versa. In addition, symbolic approximation mediated
the effect of non-symbolic approximation andWMonmath attainment.
Thus, although both NS and WM contribute to math performance (also
seeHornung, Schiltz, Brunner, &Martin, 2014), the relative contribution
of WM and NS to math performance remains controversial. In addition,
there is no evidence for the relationship among WM, NS, and math at-
tainment at high school level.

1.4. Purposes of the present study

In summary, the inconsistencies for the contribution of WM and NS
to mathematic achievement in previous studies (Hassinger-Das et al.,
2014; Xenidou-Dervou et al., 2013) may result from the specific tasks
used in different research with different ages. In our study, a WM test
battery with complex span, updating and spatial memory tasks was
used to investigate the relative contribution of WM and NS in junior
high school students who are obliged to study reasonably complex
mathematics. Our second purpose was to document the developmental
trend in WM, NS, and their relative contribution to math performance,
which would show us the general pattern among WM, NS, and math
of junior high school students and whether there is any specific pattern
at a particular grade level. As subject content in the mathematics class
becomes more demanding, the reliance of mathematics performance
on basic NS might decrease, while the role of other abilities such as
visuo-spatial ability, reasoning, and management of strategy use
might become more relevant. Thus, a substantial contribution from
WM compared to NS might be expected for mathematics attainment
of junior high school students.

2. Method

2.1. Participants

Two hundred and sixty-seven students (grades 7–9, abbreviated as
G7–G9) in a junior high school in southern Taiwan participated in this
experiment. This study was conducted with the school's approval. The
homeroom teacher of each class was also informed about the purpose
and procedure of this study. In addition, the ethical guidance for educa-
tional research established by the Human Research Protection Program
of National Science Council (NSC-HRPP) in Taiwan was followed. Origi-
nally, four classes were randomly selected from each grade for partici-
pation (total, 353 students). Students were excluded from analysis if
they did not complete the whole experiment, did not have a complete
record of three sectional achievement tests in school (e.g., if they trans-
ferred from another school during the semester), or had disabilities or a
special demographic background (such as Taiwan aboriginal people and
children of denizens, who may have low learning performance due to
cultural or family issues). The final sample consisted of 131 females
and 136 males: 86 students in grade 7 (female: 46; male: 40), 79 stu-
dents in grade 8 (female: 38;male: 41), and 102 students in grade 9 (fe-
male: 47; male: 55). The range of ages in the whole sample was 12.3–
15.3. The mean ages and standard deviations from grades 7–9 were
12.9 (0.54), 13.8 (0.30), and 14.7 (0.30), respectively.
2.2. Design

The aims of the present studywere to investigate the developmental
trend in WM and NS, as well as their relationship with mathematics
achievement of junior high school students. First, we were interested
how children in grades 7–9 differed in WM and NS task performance
and mathematics achievement. Second, correlational and hierarchical
regression analyses were conducted to explore the relationships
among these factors.

2.3. Materials

WMandNS taskswill be described in detail in the following sub-sec-
tions, and achievement tests will also be presented.

2.3.1. Working memory tasks (WM)
The WM test battery developed by Lewandowsky et al. (2010) was

adopted in the present study. This battery was designed to include
taskswith both verbal (including numerical) and spatialmaterial. In ad-
dition, updating, maintenance while processing unrelated stimuli, and
relational integration were assessed with the memory updating (MU),
operation span (OS) and sentence span (SS), and spatial short-term
memory (SSTM) tasks, respectively. In their study, the battery was val-
idated in three experiments conducted in two languages (English and
Chinese; in the present study, we employed the Chinese version), in-
volving N350 participants. The tasks were found to load on a single la-
tent variable, which was found in a subsequent experiment to
correlate highly with performance on Raven's matrices test of fluid in-
telligence (De Lemos & Raven, 1989). The battery consists of four
tasks: an MU task, an OS task, an SS task, and an SSTM task; see Fig. 2.

First, in each trial of the MU task, there were three, four or five rect-
angular frames shown on the screen simultaneously (Fig. 2-A), and a
single digit was presented for 1 s in each of the frames in sequence
(e.g., “7” or “5”). Participants had to remember the digit for each partic-
ular frame. Nextwas theupdatingperiod. An arithmetic operation (such
as “−4” or “+3”) appeared in a particular frame for 1.3 s, and partici-
pants had to calculate the result in that frame (e.g., 7 − 4 = 3). The
number of updating operations varied from two to six in each trial,
and this updating process continued until a questionmark “?” appeared
in each frame. This was the recall period, in which participants were re-
quired to enter the memorized updated results into each frame. There-
fore, in this task, participants should remember the original digit and do
one-digit addition or subtraction for each frame, then keep updating
until reporting the final answer at the end of the trial. There was no
time constraint on the response, but participants could not change the
answer once it was entered. Before testing, participants completed
two practice trials to familiarize themselves with the task procedure,
and therewere 15 experimental trials in total. Task accuracywas thede-
pendent measure collected.

Second, in each trial of the OS task, a fixation cross was shown at the
center of the screen for 1.5 s, then an arithmetic equation (e.g., 2 + 8=
5) was presented on the screen for 3 s for participants to judge whether
it was correct or not. Thereafter, a letter (e.g., H) appeared on the screen
for 1 s for participants to memorize. The sequence (arithmetic equation
and letter) was repeated between four and eight times in each trial. At
the end of each trial, participants had to recall all the letters in the pre-
sented order when a question mark “?” appeared on the screen. There-
fore, what participants had to do was memorize each letter correctly in
the presented sequence (see Fig. 2-B). There was no time constraint on
the response, but participants could not change the answer once it was
entered. After entering all letters, the next trial proceeded. Before test-
ing, participants completed three practice trials to familiarize them-
selves with the experimental procedure, and the formal task
comprised 15 experimental trials. Since the equation judgment was a
distractor, task accuracywas collected from the correctness of themem-
orized letter sequence.



Fig. 2. Experimental procedures for 4 tasks in working memory (WM) test battery: (A) memory updating task (MU), (B) operation span task (OS), (C) sentence span task (SS), and (D)
spatial short-term memory task (SSTM).
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Third, in the SS task, similar in structure to the OS task, in each trial a
fixation crosswas shown at the center of screen for 1.5 s, and then a Chi-
nese sentence was presented on the screen for 5 s for participants to
judge whether it was correct or not. Thereafter, a letter (e.g., R) ap-
peared on the screen for 1 s for participants to memorize. The sequence
(sentence and letter) repeated between three and seven times in each
trial. At the end of each trial, participants had to recall all the letters in
the presented order when a question mark “?” appeared on the screen.
Therefore, what participants had to do was memorize each letter cor-
rectly in the presented sequence as they did in the OS task (see Fig. 2-
C). There was no time constraint on the response, but participants
could not change the answer once it was entered. After entering all let-
ters, the next trial proceeded. Before testing, participants completed
three practice trials to familiarize themselves with the experimental
procedure, and the formal task comprised 15 experimental trials.
Again, task accuracy was collected from the correctness of the memo-
rized letter sequence.

Fourth, in each trial of the SSTM task, participants saw a black grid of
10 × 10 cells presented on a white screen. At the beginning, a cross was
shown at the center of screen for 1 s, and then a black dot was shown in
one of the cells for 900ms. Between two and six dotswere shown in dif-
ferent cells, successively (Fig. 2-D). Participants had to memorize the
relative positions of the dots appearing on the grid in each trial. After
the dots had been displayed, “End – Please reproduce the dots pattern”
was shown on the screen. Participants had to reproduce the pattern of
dots in an empty 10× 10 grid on the screen by clicking the dot positions.
If needed, they could delete any dot by clicking on it again. Each answer
would be regarded as correct if the relative spatial relationships be-
tween thedotswere reproduced correctly. Therewasno time constraint
on the response. After recalling the relative position of dots in that trial,
participants clicked the “next” button on the screen to proceed to the
next trial. There were two practice trials for familiarizing the method
before testing, and the formal task comprised 30 experimental trials.
Task accuracy was the dependent measure collected.

Scoring of the fourWM tasks was conducted with the analysis pack-
age provided by theWMtest battery (Lewandowsky et al., 2010). InMU
and the two span tasks, proportional correctness in each trial was calcu-
lated (e.g., the score 5/6 represented that there were five correct an-
swers with six items to be memorized in a trial). Next, scores in all
trials were averaged. For each participant the maximum score was 1
and theminimumwas0. The scoring in SSTMtaskwasbased on similar-
ity. Two points were awarded for each dot if participants clicked on the
exact position, while one point was assigned if the reported position
was within one grid from the correct position. The final score for each
participant was the sum of points received, and divided by themaximal
number of points (if all dots were reported correctly). The maximum
score for each participant was 1 and the minimum was still 0. The reli-
ability measures (Cronbach's α) for MU, OS, SS, and SSTM tasks were
0.90, 0.89, 0.90, and 0.93, respectively.

2.3.2. Number sense (NS; the approximate numerosity system task)
The task was based on the one used by Halberda et al. (2008). In this

task, blue and yellow dots of various sizes were presented simulta-
neously on a gray screen (Fig. 1). The number of blue dots was more
than that of yellow dots in half of the trials. The ratios of quantity for
the two dot groupswere 2 (2:1), 1.33 (4:3), 1.2 (6:5), and 1.14 (8:7), re-
spectively. In half of the trials, the total pixels occupied by blue and yel-
low dots were the same (area-controlled trials). In the other half, the
average sizes of blue and yellow dots were the same (dot-size-con-
trolled trials.)

Each trial began with a fixation cross for 1–1.5 s, and then the dots
appeared on the screen for 200ms. After a 500ms interval, a black ques-
tion mark “?” appeared on the center of screen, reminding participants
to press the button N or M on the keyboard to indicate which group of

Image of Fig. 2


Table 1
The means and standard deviations (in parentheses) on accuracy of 4 working memory
(WM) task scores, NS task scores with 4 different ratios (R=2, 1.33, 1.2, 1.14), and 3 sec-
tional math examination scores as a function of grade.

G7 G8 G9 All

Working memory tasks
MU 0.53 (0.19) 0.56 (0.2) 0.63 (0.19) 0.58 (0.20)
OS 0.53 (0.20) 0.62 (0.17) 0.66 (0.17) 0.61 (0.19)
SS 0.54 (0.23) 0.67 (0.20) 0.66 (0.20) 0.63 (0.22)
SSTM 0.78 (0.08) 0.82 (0.08) 0.85 (0.06) 0.82 (0.08)

Number sense task
R = 2 0.83 (0.12) 0.83 (0.15) 0.90 (0.09) 0.86 (0.12)
R = 1.33 0.69 (0.10) 0.70 (0.12) 0.75 (0.09) 0.72 (0.11)
R = 1.2 0.63 (0.07) 0.62 (0.07) 0.66 (0.07) 0.64 (0.07)
R = 1.14 0.60 (0.05) 0.59 (0.07) 0.62 (0.06) 0.61 (0.06)
Overall 0.65 (0.06) 0.64 (0.07) 0.69 (0.06) 0.66 (0.06)

Sectional examinations of math
Test 1 0.50 (0.15) 0.56 (0.14) 0.54 (0.15) 0.53 (0.15)
Test 2 0.52 (0.16) 0.57 (0.17) 0.54 (0.16) 0.54 (0.16)
Test 3 0.52 (0.17) 0.57 (0.16) 0.54 (0.16) 0.54 (0.16)
Mean 0.51 (0.15) 0.57 (0.15) 0.54 (0.15) 0.54 (0.15)

Note: G7, G8, G9: grades 7, 8, 9 respectively.
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dots had a higher quantity. In the whole task, the correspondence be-
tween answer key (i.e., N or M) and quantity (i.e., more blue or more
yellow) was counter-balanced. There was no time constraint on the re-
sponse, and after entering, the next trial proceeded.

There was a practice block before the task, with 12 trials for partici-
pants to familiarize themselves with the task procedure (three trials for
each of the four ratios). After practicing, participants performed the ex-
perimental task,which consisted of 320 trials (120 trials respectively for
the ratios 1.14 and 1.2, and 40 trials, respectively, for the ratios 1.33 and
2); all were presented randomly in 10 blocks (32 trials in each block).
Participants received accuracy feedback in the practice block, but no
feedback appeared in the experimental task. For data analysis, accuracy
rates for itemswith four different ratios were calculated for each partic-
ipant. The reliability measures (Cronbach's α) of ratios 2, 1.33, 1.2, and
1.14 were 0.82, 0.56, 0.61, and 0.50, respectively.

2.3.3. Mathematics achievement tests (MATH)
The average scores of three sectional mathematical examinations

during one semester was the index for mathematics achievement. The
topics covered in each grade were as follows. In grade 7, the topics in-
cluded arithmetic operations of integers and fractions, exponentials, sci-
entific notations, common factors and common multiples, and linear
equationswith a single unknown. In grade 8, students learnedmultipli-
cation formulas, formulas for polynomials and square roots, Pythagoras
Theorem in geometry, factorization, and quadratic equationswith a sin-
gle unknown. In grade 9, therewere similar geometrical figures, proper-
ties of circles, properties of triangles, and probability. In each
examination, test items generally included 10–14multiple choice ques-
tions, 7–15 fill-in-the-blank questions, and 2–6 calculational questions
or word problems. The duration of each examination was 50 min. Stu-
dents at each grade level took the examination at the same time in
their own classrooms. During the exam, teachers monitored the stu-
dents to ensure that there was no cheating among students. Questions
about test itemswould be clarifiedwithout further conceptual explana-
tion. After the exam, scoring was conducted by the instructors. There
were standard scoring rubrics for each exam; 3–4 pointswere rewarded
for each multiple choice, fill-in-the blank question, and sub-item in cal-
culational questions or word problems.

The score of each sectional examination in each grade was first nor-
malized. Next, three normalized exam scores were averaged for each
student. Themean of the scorewas set at 0.5 and the standard deviation
was set at 0.15. The range of scores was between 0 and 1.

2.4. Procedure

Both the WM test battery and NS task were administered in a com-
puter lab. Each class of students participated in the five tasks as a group.
Each taskwas completed in about 10min; the total amount of timewas
approximately 50 min. Half of the students completed the NS task be-
fore the WM tasks, and vice versa. The WM tasks were performed fol-
lowing the fixed order MU, OS, SS, and SSTM. The WM and NS tasks
were administrated from November 2011 to January 2012; while the
three sectional examinations were held during the semester from Sep-
tember 2011 to January 2012. Two consecutive sectional examinations
were separated by 6–7 weeks.

3. Results

There were two sets of analyses. First we investigated the develop-
mental trend inWM tasks, NS tasks, andmath achievement tests across
grades 7–9 in three separate analyses of variance. Second, the correla-
tions amongWM tasks, NS tasks, and math achievement tests were an-
alyzed. Then, the relative contribution of background factor (i.e., grade)
and observational factors (performance on WM and NS tasks) to math
achievement scores was examined by hierarchical regression analyses.
Separate correlation and regression analyseswere also conducted to re-
veal differential patterns according to grade levels.

3.1. Analyses of variance

Themeans and standard deviations inWM tasks, NS tasks, and three
sectional examination scores as a function of grade are presented in
Table 1.

3.1.1. Working memory tasks
Separate one-wayANOVAwas conducted to examine grade effect on

each WM task. There were significant main effects of grade on all WM
tasks (Fs N 7.053, all ps b 0.01). Post hoc analyses revealed that in MU
task, G7 and G8 had significantly lower scores than G9 (both
ps b 0.05), while there was no difference in scores between G7 and
G8. In OS and SS tasks, G8 and G9 had significantly higher scores than
G7 (all ps b 0.01), but there was no difference in scores between G8
and G9. In the SSTM task, the performance increased as a function of
grades, and all pairwise comparisons were significant (all ps b 0.01).
The improvement on performance with grade supports the validity of
these tasks as the measures of cognitive abilities. Therefore, as age in-
creases, the cognitive abilities of junior high school students mature.

3.1.2. Number sense task
There were four types of items that differed in the ratio between

blue and yellow dots in the NS task, and the item difficulty increased
as the ratio decreased. Thus, item difficulty was included in the analysis
as a within subject factor, and grade was a between subject factor, in a
two-way ANOVA. Significant main effects of grade (F = 11.855,
p b 0.001) and difficulty (F = 819.911, p b 0.001) were observed. G9
had significantly higher scores than G7 and G8 (both ps b 0.001)
while the latter groups did not differ fromeach other (p N 0.999). Perfor-
mance decreased as the item difficulty increased, with significant
pairwise comparisons (all ps b 0.001). There was a significant interac-
tion effect between grade and difficulty (F = 3.347, p b 0.01). Follow-
up interaction contrasts revealed that G7 andG9differed in the compar-
isons between ratios 2 vs. 1.2, ratios 2 vs. 1.14, ratios 1.33 vs. 1.2, and ra-
tios 1.33 vs. 1.14; while G8 and G9 differed in comparisons between
ratios 2 vs. 1.2 and ratios 2 vs. 1.14 (all ps b 0.05). For the difficult
items (R= 1.14 and 1.2), the improvement from G7 to G9 was smaller
than that for the easier items (R = 1.33 and R = 2). The difference be-
tween the two easy and the two difficult items was significantly differ-
ent between G7 and G9. For G8 and G9, the differential pattern was
significant only when compared to the easiest item (R=2). The finding
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that differential patterns between G8 and G9were fewer than those be-
tween G7 and G8 signifies developmental improvement. To sum up, the
main finding was that performance in NS task increased with grade
levels as WM abilities did. Nevertheless, this decreased when the item
difficulty increased. These findings were similar to the findings from
Halberda and Feigenson (2008).

3.1.3. Mathematics achievement tests
The examination scores were all normalized, because the content in

each sectional examination and between grades was different. To en-
sure that there were no difference among grade and sections, a 3 × 3
(grade × section) ANOVA was conducted. In the omnibus analysis,
there was no significantmain effect of grade (F=2.607, p=0.076). Al-
though themain effect of sectionwas significant (F=3.038, p=0.049),
the follow-up pairwise comparisons were not significant (all ps N 0.07).
The interaction between grade and section was not significant (F =
1.050, p N 0.38).

3.2. Correlational and regression analyses

3.2.1. Correlational analysis
Table 2 presents correlations among math score, WM and NS tasks.

The correlationmatrix indicates that all variableswere significantly cor-
related with each other (rs N 0.3, all ps b 0.001). Overall, MU had the
highest correlation coefficient with math score and had higher correla-
tions with other tasks than the remaining pair-wise correlations except
that between the span tasks (OS and SS). Since MUmay be involved in
the correlations of otherWM or NS tasks withmath score, partial corre-
lations among variables without MU score were calculated. After the
MU score was partialled out, the correlation between math achieve-
ment score and other WM tasks and NS were no longer significant
(OS: r = 0.115; SS: r = 0.030; SSTM: r = 0.002; NS: r = 0.068).
When OS, with the second largest correlation with math achievement,
was partialled out, all of the correlations except SS were still significant
(MU: r = 0.481, p b 0.001; SS: r = 0.054, p N 0.37; SSTM: r = 0.122,
p b 0.05; NS: r = 0.178, p b 0.01).

When correlational analyses were conducted for each grade level
separately, similar patterns of results were obtained. As shown in
Appendix 1, all WM and NS tasks significantly correlated with each
other and with math scores except for SS and NS at grade 9 (r =
0.163, p N 0.10). Analogous to the analysis with the whole data, when
MUwas partialled out, the correlations with math score was not signif-
icant (|r |s b 0.19, ps N 0.09) except for a significant correlation between
NS and math score at grade 7 (r = 0.226, p b 0.05). When OS was
partialled out, the correlation between MU and math score was signifi-
cant for all grade levels (rs N 0.45, ps b 0.001); additionally, a partial cor-
relation between NS and math score was also significant for G7 (r =
0.304, p b 0.01). This pattern of results suggests that MU played a dom-
inant role in math achievement scores, similar to the findings fromHan
et al. (2016). Although both MU and OS were related to math opera-
tions, letter-triad was updated in the OS task while arithmetic results
were updated in the MU task. Thus, MU made a unique contribution
Table 2
Correlations among math achievement, 4 working memory (WM) tasks (MU, OS, SS,
SSTM), and NS task.

Math
achievement

MU OS SS SSTM NS

Math
achievement

1 0.631⁎⁎⁎ 0.477⁎⁎⁎ 0.363⁎⁎⁎ 0.348⁎⁎⁎ 0.349⁎⁎⁎

MU 1 0.648⁎⁎⁎ 0.545⁎⁎⁎ 0.549⁎⁎⁎ 0.479⁎⁎⁎

OS 1 0.689⁎⁎⁎ 0.541⁎⁎⁎ 0.435⁎⁎⁎

SS 1 0.527⁎⁎⁎ 0.308⁎⁎⁎

SSTM 1 0.477⁎⁎⁎

NS 1

⁎⁎⁎ p b 0.001.
to math achievement even after OS was partialled out. The significant
partial correlation between NS and math score at G7 signifies the role
of NS in math achievement above and beyond MU and OS. Similar re-
sults were obtained from the following hierarchical regression analysis.

3.2.2. Regression analysis
Two sets of model comparisons through hierarchical regression

analyses were conducted (Tables 3 and 4). The dependent variable
was themean score of the threemathematics achievement tests. Before
the analysis, collinearity among variables was checked. The variance in-
flation factors (VIFs) were smaller than 5, indicating that there was no
collinearity among the variables.

In the first analysis, according to the decreasing order of correlation
coefficients between math score, MU, OS, SS, NS and SSTM scores were
entered one-by-one after the background factor (i.e., grade) was en-
tered. The results of R2 change are shown in Table 3. Overall, the six var-
iables jointly accounted for 41.7% of total variance. Specifically, MU and
OS accounted for 39.9% (p b 0.001) and 1.1% (p b 0.05) of variance, re-
spectively. Other variables did not result in significant changes in R2.

Our second analysis was to examine other possible variables that
may contribute to the total variance, but their effects might be overrid-
den by the two dominant variables (i.e., MU andOS) in thefirst analysis.
Thus, we reversed the order of entering variables in the second analysis.
Background factorwas still entered into the firstmodel, followed by the
five observational factors with a reversed order compared to the first
analysis (i.e., SSTM, NS, SS, OS, and MU). All of the observational factors
contributed to the total variance by a significant amount when OS and
MU were entered in the last steps (Table 4) while grade merely
accounted for a negligible amount of variance (0.5%, p N 0.2). The results
of the two analyses suggest that MU could account for the largest
amount of the total variance. In addition, other observational variables
also accounted for some of the total variance. However, if MU was en-
tered earlier, then the contribution of other variables reduced substan-
tially. In other words, the influence of other variables was smaller
compared with that of MU.

When the unique contribution of the WM and NS tasks to math
score was analyzed for each grade level separately (shown in
Appendices 2 and 3), in the first analysis, MU accounted for a 41.5,
34.9, and 48.1% of variance respectively for grades 7, 8, 9 (all
ps b 0.001). With the first entering order, NS accounted for a significant
amount of variance (2.9%, p b 0.05) after MU was entered in the model
for G7. Other variables did not significantly contribute to math score
after MU. This pattern of results was similar to that in the correlational
analysis. With the reversed order, all variables except SS at G7 (0.9%,
p N 0.31) contributed to math score. In summary, separate analyses at
each grade level provided convergent evidence that MU played a dom-
inant role in math achievement. The finding was not only shown in ju-
nior high school students in the present study, but in university
students in the study of Han et al. (2016). Nevertheless, it should be
noted that NS also contributed to the math achievement at G7.

4. Discussion

The purpose of the present studywas to document the developmen-
tal trend in WM abilities and NS in junior high school students, and to
investigate their influence on math attainment.

First, there were developmental trends in WM abilities and NS. In
WM tasks, G9 had better performance in the MU task than G7 and G8.
G9 and G8 had better performance than G7 in both OS and SS span
tasks. Similarly, in the SSTM task, there was an improvement in which
all pairwise comparisons were significant. This is consistent with find-
ings in the literature, with the general trend of cognitive improvement
at least until adolescence (e.g., Gathercole, Pickering, Ambridge et al.,
2004; Linares et al., 2016; Luciana et al., 2005; Swanson, 1996). Further-
more, there was also a developmental trend in the NS task. Overall, G9
had better performance than G7 and G8. The NS task showed the



Table 3
Model comparisons through hierarchical regression analysis with the entering order of grade, MU, OS, SS, NS, and SSTM. The unstandardized (b) and standardized (β) coefficients were
obtained from the full model with all variablesa.

Variable R R2 ΔR2 F change p value (F change) b β p value (coefficient)

Grade 0.068 0.005 0.005 1.246 0.265 −0.018 −0.098 0.060
MU 0.635 0.403 0.399 176.290 0.000 0.425 0.549 0.000
OS 0.644 0.414 0.011 5.067 0.025 0.122 0.152 0.044
SS 0.644 0.415 0.001 0.303 0.582 −0.022 −0.031 0.646
NS 0.646 0.417 0.002 0.959 0.328 0.131 0.056 0.327
SSTM 0.646 0.417 0.000 0.020 0.886 −0.017 −0.009 0.886

a Unstandardized (b) and standardized (β) coefficients from the final model with all variables are also reported in Tables 3 and 4. It should be noted that model comparisons with
hierarchical regression analysis examined whether a particular variable uniquely contributed to math score above and beyond other variables in the previous model. Conversely, regres-
sion coefficients for each variable in the final model revealed the relationship between that variable andmath score. These two measures may not coincide with each other. According to
our research question, ΔR2 was the main focus for discussion.
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pattern that scores were lower for more difficult items (i.e., lower ratio
between blue and yellow dots), and this interactedwith grade such that
the similarity of pattern in improvement across item difficulty between
G8 and G9was higher than that between G7 and G9. The improvement
of NS accuracy from G7 to G9 was consistent with the results from the
large online assessment conducted byHalberda et al. (2012).Most stud-
ies in the literature addressed the developmental trend in NS in the
early stage of life; however, the present study tracked and observed
the trend in young adolescents.

Second, working memory ability, especially that probed by the MU
task, played a dominant role in math achievement. In the correlational
analysis, MU had the highest correlation coefficient with math achieve-
ment scores, and it also had high correlation coefficients with NS and
otherWM task scores. Although allWMand NS task scores significantly
correlated with math achievement scores, the partial correlation was
negligible after MU had been partialled out. The correlation between
MU and math achievement remained when OS that had second largest
correlation with math scores was partialled out. This pattern of results
suggests that MU made a higher contribution to math achievement.
The finding was consistent with the subsequent regression analyses.
With the model comparisons through hierarchical regression analysis,
when MU was entered first, other task scores made a negligible contri-
bution to math achievement (changes in R2 were b11%) except that the
unique contribution of OS was significant. However, when the entering
order of variableswas reversed, all task scoresmade a significant unique
contribution to math achievement scores. In both regression analyses,
MU still had the largest unique contribution to math scores (39.9 and
14.8%). Analogous to the correlational analyses, MU made a dominant
contribution to math score, which masked the contribution from other
task scores. The influences of other task scores were negligible when
that of MU was partialled out, and their influences were observable
only when MU was entered into regression model in the last step. The
pattern of the correlational and regression analyses almost remained
across the three grade levels. However, at grade 7, NS significantly cor-
related withmath scores afterMU and OSwere partialled out. In the re-
gression analysis, NS also had significant contribution to math
performance after MU had been included in the regression model.
Table 4
Model comparisons through hierarchical regression analysis with the entering order of grade,
obtained from the full model with all variables.

Variable R R2 ΔR2 F change p

Grade 0.068 0.005 0.005 1.246 0.
SSTM 0.355 0.126 0.121 36.566 0.
NS 0.413 0.171 0.045 14.338 0.
SS 0.459 0.210 0.039 13.084 0.
OS 0.519 0.269 0.059 20.986 0.
MU 0.646 0.417 0.148 66.124 0.
In the present study, MU made more contribution to math achieve-
ment than otherWMtasks andNS task. In the literature, it has beendoc-
umented that both WM (especially CE) and NS made a unique
contribution to math above and beyond the other variable (e.g.,
Xenidou-Dervou et al., 2013). In addition, both mediation directions
(from WM to NS and the reverse) were observed (Hassinger-Das et
al., 2014; Xenidou-Dervou et al., 2013). The inconsistent findings indi-
cated the complicated relationship amongWM, NS, and math achieve-
ment. The tasks, measures, and mathematic topics are influential
factors. Both MU and OS used in the present study involved operating
on numbers (see the next paragraph for further discussion), while, for
example, those used in the study of Xenidou-Dervou et al. (2013) in-
volved recalling words backward and to remember the locations of
sets of boxes that contained a unique shape, and thus had no numerical
content. Moreover, the math attainment tests used in the present study
covered a variety of topics in the first semester of grades 7–9, while
those used in the study of Xenidou-Dervou et al. were counting and
exact symbolic addition for preschoolers. Thus, the relative contribution
ofworkingmemory tomathematics performancemay changewith cog-
nitive development and curriculum. Studies about preschoolers and el-
ementary students demonstrated the involvement of CE; however, the
contribution of phonological loop and visuo-spatial sketchpad varies
across grade levels (De Smedt et al., 2009; Holmes & Adams, 2006).
With progression into higher grade levels, advanced mental operations
are necessary. Updating, a CE sub-function, involves assessing informa-
tion that may not be within attentional focus, transformation and sub-
stitution (Ecker et al., 2010). These processes might be involved in
solving advanced math questions in the high school curriculum. All
other WM components, such as maintaining verbal and visual informa-
tion, as well as NS, still engage in math operations but are relatively less
essential thanMU. It is also possible that the tasks we adopted were not
comparable in terms of complexity (e.g., SSTMmight involve less men-
tal operation than other tasks.) Nevertheless, it is intriguing that NS
plays an important role (although moderate) in math achievement at
grade 7 above and beyond MU. It is possible that seventh graders still
rely on innate ability during their first semester with formal operations.
Further investigation can be devoted to the mechanism of transition
SSTM, NS, SS, OS, and MU. The unstandardized (b) and standardized (β) coefficients were

value (F change) b β p value (coefficient)

265 −0.018 −0.098 0.060
000 −0.017 −0.009 0.886
000 0.131 0.056 0.327
000 −0.022 −0.031 0.646
000 0.122 0.152 0.044
000 0.425 0.549 0.000
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from basic math operations in elementary school to formal operations
in high school.

It should be noted that although the updating task adopted in the
present study involves numerical operation, updating per se rather
than number processing might be more critical for math achievement.
In the study of Han et al. (2016), the relationship between various ver-
sions of updating tasks andmulti-digit mental multiplication by under-
graduates was investigated. Modified from the MU task used in the
present study (nominated as MUcalc in their study), the MUSpace
task only required participants to update the final positions of three,
four, orfive dots after several 90° clockwise and counterclockwise trans-
formations. Thus, the information about assessing, transformation, and
substitution were applied to non-numerical material. In their third
task (MUNumber), participants had to remember the larger number
in a pair of digits presented in each frame. Only substitution was re-
quired, because each pair presented in the same framewas independent
from the preceding and following pairs. Similarly, the larger animal in
the pair presented as written words was updated in the fourth task
(MUWord). Among these tasks, MUclac and MUSpace significantly cor-
related with the performance in difficult items (four-digit number mul-
tiplied by one-digit number) rather than that in easy items (two-digit
number multiplied by one-digit number). Although digit was updated
in the MUNumber task, it did not correlate with math performance.
Thus, it was updating per se (especially transformation) rather than
numbers that predicted the math performance. This may explain the
much smaller contribution of OS than that of MU to math achievement
in this study. The arithmetic task involved in the OS task was the
distractor rather than the target to be memorized. It is also possible
that when students solve mathematics problems, they do not switch
away to process an irrelevant task as they do in the complex span task
(e.g., the OS task), whereas updating temporary results are involved in
problem solving.

Although NS may be fundamental to concepts of number
(Feigenson, Dehaene, & Spelke, 2004), much more is involved in
succeeding in learningmathematics in grades 7–9. In particular, mathe-
matics involves complex tasks that relate different elements together in
order to understand the concepts and to reach solutions. Therefore, this
may load more heavily on working memory (especially the updating
G
M
M
O
SS
SS
N

G
M
M
O
SS
SS
N

G
M
M
O
SS
SS
ability) than simple tasks that require little more than understanding
numbers and their relationships in the four arithmetical operations
(see Best et al., 2011). This suggests that students identified as hav-
ing low working memory capacity could be helped by breaking
mathematical operations into manageable pieces and using scaffold-
ing to train procedures that reduce working memory load. The find-
ing that working memory ability had greater influence on math
achievement than NS is important for math learning in school. It is
not easy to find an effective way to train the NS ability, but there
are manyways we can help students to improve their workingmem-
ory, which may enhance their math performance (e.g., Holmes,
Gathercole, & Dunning, 2009).

The present study documented the developmental trend inWMand
NS, as well as their contribution to math achievement of junior high
school students. Although age-related improvement in WM and NS
through adolescence has been investigated in some studies, their rela-
tive contribution to math performance was missing in the literature.
The findings from the present study let us understand the relative role
of NS and aspects ofWMon individual differences inmath achievement
of junior high school students. The influence of NS onmathperformance
was smaller than WM. Moreover, among various WM tasks, MU was
found to play a dominant role in advanced math operations. However,
in the present study, math achievement was assessed by the sectional
examination tests during the semester in high school; despite its eco-
logical validity, it is not easy to scrutinize a specific predictor for each
topic covered in one sectional exam. Furthermore, many other WM
components could be assessed depending on the adopted theoretical
framework. To conclude, the present study demonstrated the impor-
tance of MU compared to NS inmath achievement of junior high school
students.
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Appendix A
Appendix 1

Correlations among math achievement, 4 working memory (WM) tasks (MU, OS, SS, SSTM) and NS task as a function of grade.
Math achievement
 MU
 OS
 SS
 SSTM
 NS
rade 7

ath achievement
 1
 0.645⁎⁎⁎
 0.494⁎⁎⁎
 0.367⁎⁎⁎
 0.419⁎⁎⁎
 0.417⁎⁎⁎
U
 1
 0.635⁎⁎⁎
 0.585⁎⁎⁎
 0.541⁎⁎⁎
 0.402⁎⁎⁎
S
 1
 0.774⁎⁎⁎
 0.480⁎⁎⁎
 0.340⁎⁎
1
 0.599⁎⁎⁎
 0.346⁎⁎
TM
 1
 0.361⁎⁎⁎
S
 1
rade 8

ath achievement
 1
 0.590⁎⁎⁎
 0.459⁎⁎⁎
 0.396⁎⁎⁎
 0.306⁎⁎
 0.391⁎⁎⁎
U
 1
 0.565⁎⁎⁎
 0.497⁎⁎⁎
 0.551⁎⁎⁎
 0.549⁎⁎⁎
S
 1
 0.581⁎⁎⁎
 0.599⁎⁎⁎
 0.531⁎⁎⁎
1
 0.515⁎⁎⁎
 0.413⁎⁎⁎
TM
 1
 0.540⁎⁎⁎
S
 1
rade 9

ath achievement
 1
 0.694⁎⁎⁎
 0.472⁎⁎⁎
 0.293⁎⁎
 0.324⁎⁎⁎
 0.319⁎⁎
U
 1
 0.689⁎⁎⁎
 0.526⁎⁎⁎
 0.468⁎⁎⁎
 0.391⁎⁎⁎
S
 1
 0.615⁎⁎⁎
 0.400⁎⁎⁎
 0.387⁎⁎⁎
1
 0.351⁎⁎⁎
 0.163

TM
 1
 0.418⁎⁎⁎
S
 1
N
⁎⁎ p b 0.01.
⁎⁎⁎ p b 0.001.



39M.-H. Yen et al. / Learning and Individual Differences 54 (2017) 30–40
Appendix 2

Model comparisons through hierarchical regression analysis with the entering order of MU, OS, SS, NS, and SSTM as a function of grade. The unstandardized (b) and standardized (β) co-
efficients were obtained from the full model with all variables.
Variable
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R
 R2
 ΔR2
 F change
 p value (F change)
 b
 β
 p value (coefficient)
rade 7

U
 0.645
 0.415
 0.415
 59.691
 0.000
 0.387
 0.494
 0.000

S
 0.654
 0.427
 0.012
 1.745
 0.190
 0.202
 0.263
 0.059
0.663
 0.439
 0.012
 1.717
 0.194
 −0.166
 −0.256
 0.072

S
 0.685
 0.469
 0.029
 4.496
 0.037
 0.459
 0.176
 0.055

TM
 0.690
 0.476
 0.008
 1.168
 0.283
 0.209
 0.116
 0.283
rade 8

U
 0.590
 0.349
 0.349
 41.216
 0.000
 0.367
 0.486
 0.000

S
 0.610
 0.372
 0.023
 2.819
 0.097
 0.164
 0.187
 0.160
0.613
 0.375
 0.003
 0.418
 0.520
 0.075
 0.100
 0.400

S
 0.613
 0.376
 0.001
 0.104
 0.748
 0.149
 0.073
 0.539

TM
 0.625
 0.390
 0.014
 1.693
 0.197
 −0.311
 −0.164
 0.197
rade 9

U
 0.694
 0.481
 0.481
 92.818
 0.000
 0.581
 0.712
 0.000

S
 0.694
 0.481
 0.000
 0.012
 0.911
 0.025
 0.029
 0.795
0.700
 0.489
 0.008
 1.508
 0.222
 −0.079
 −0.106
 0.272

S
 0.701
 0.491
 0.002
 0.348
 0.557
 0.129
 0.049
 0.568

TM
 0.701
 0.491
 0.000
 0.002
 0.968
 −0.008
 −0.003
 0.968
SS
Appendix 3

Model comparisons through hierarchical regression analysis with the entering order of SSTM, NS, SS, OS, and MU as a function of grade. The unstandardized (b) and standardized (β) co-
efficients were obtained from the full model with all variables.
Variable
 R
 R2
 ΔR2
 F change
 p value (F change)
 b
 β
 p value (coefficient)
rade 7

TM
 0.419
 0.176
 0.176
 17.932
 0.000
 0.209
 0.116
 0.283

S
 0.507
 0.257
 0.081
 9.060
 0.003
 0.459
 0.176
 0.055
0.516
 0.266
 0.009
 1.037
 0.312
 −0.166
 −0.256
 0.072

S
 0.594
 0.353
 0.087
 10.880
 0.001
 0.202
 0.263
 0.059

U
 0.690
 0.476
 0.123
 18.814
 0.000
 0.387
 0.494
 0.000
rade 8

TM
 0.306
 0.094
 0.094
 7.968
 0.006
 −0.311
 −0.164
 0.197

S
 0.407
 0.166
 0.072
 6.577
 0.012
 0.149
 0.073
 0.539
0.468
 0.219
 0.054
 5.142
 0.026
 0.075
 0.100
 0.400

S
 0.512
 0.262
 0.042
 4.229
 0.043
 0.164
 0.187
 0.160

U
 0.625
 0.390
 0.129
 15.422
 0.000
 0.367
 0.486
 0.000
rade 9

TM
 0.324
 0.105
 0.105
 11.756
 0.001
 −0.008
 −0.003
 0.968

S
 0.382
 0.146
 0.041
 4.752
 0.032
 0.129
 0.049
 0.568
0.426
 0.181
 0.035
 4.218
 0.043
 −0.079
 −0.106
 0.272

S
 0.506
 0.256
 0.075
 9.760
 0.002
 0.025
 0.029
 0.795

U
 0.701
 0.491
 0.235
 44.314
 0.000
 0.581
 0.712
 0.000
M
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